CHEMICAL HYGIENE PLAN

Chemical Safety Committee &
Chemical Hygiene Officer,
Jamie Herrick
Reviewed annually
Revised October 2014
College of the Holy Cross
Chemical Hygiene Plan

1. Introduction
 A. Purpose
 B. Scope

2. Responsibilities
 A. College President
 B. Vice President for Academic Affairs and Dean of the College
 C. Chemical Hygiene Officer
 D. Chemical Safety Committee
 E. Department Chair
 F. Laboratory, Studio and Theater Personnel (Faculty, Supervisors and Full-time Research Assistants)
 G. Students who work in a laboratory, studio or theater
 H. Custodians, Repair Personnel, and Public Safety Officers
 I. Outside contractors
 J. Visitors

3. General Principles
 A. Minimize Routine Chemical Exposures
 B. Avoid Underestimation of Chemical Exposures
 C. Provide Adequate Ventilation
 D. Chemical Hygiene Program

4. Components of the Chemical Hygiene Plan
 A. Basic Rules and Procedures
 B. Personal Apparel
 C. Preventing Chemical Exposure
 D. Housekeeping
 E. Choice of Chemicals
 F. Procedures for Procurement and Distribution of chemicals
 G. Chemical Storage
 H. Equipment and Glassware
 I. Unattended Operations
 J. Working Alone
 K. Personal Protection
 L. Protective Equipment
 M. Labeling and Identification
 N. Chemical Inventory
 O. Fire, Accident, and Spill Reporting
 P. Prior approval
 Q. Procedures for Work with Particularly Hazardous Substances
 R. Outreach programs

5. Training
 A. Information.
 B. Training
 C. Training Records

6. Hazardous Waste
 A. Small Quantity Generator
 B. Locations
 C. Labels
D. Chemical Waste Consultant
E. Disposal of Hazardous Chemicals
F. Disposal of Non-Hazardous Chemicals
G. Hazardous Waste Training

7. **Inspections**
 A. Periodic Inspections
 B. Safety Equipment
 1. Chemical Fume Hoods
 2. Safety Showers
 3. Eyewash Stations
 C. Inspections

8. **Medical Program**
 A. Personnel Rights
 B. Record Keeping

9. **Record Keeping**
 A. Safety Data Sheets (SDSs)
 B. Inventories
 C. Accidents/Spills
 D. Inspections
 E. Training
 F. Medical Records

10. **Emergency/Contingency Planning**
 A. Emergency Medical Response
 B. Hazardous Material Spills
 1. Major Spills
 2. Minor Spills
 C. Minor Spill Clean-up
 1. Spill Clean-up with no injury (during normal working hours)
 2. Spill Clean-up with injury (during normal working hours)
 3. Spill Clean-up (after normal working hours)
 4. Clean-up Equipment
 5. Common Spill Clean-ups
 D. Accidents
 1. Eye Contact
 2. Inhalation or Ingestion
 3. Skin Contact
 E. Fires and Explosions
 F. Biohazard Spills
 1. Skin Contact
 2. Clean-up

11. **Chemical Stockrooms**
 A. General Requirements
 B. Flammable Liquids Storage Cabinets
 C. Flammable and Other Compressed Gases
 D. Oxidizers and Peroxides
 E. Toxic Chemicals
 F. Water Reactive Chemicals

12. **Standard Operating Procedures (SOPs)**
 A. Definition
 B. SOP details
1. Introduction

A. Purpose

In 1990, the Occupational Safety and Health Administration (OSHA) adopted a health standard, “Occupational Exposure to Hazardous Chemicals in Laboratories," 29 CFR 1910.1450, to protect laboratory workers from chemical hazards in their workplace. This Laboratory Standard requires written health and safety practices and procedures in all laboratories that use hazardous chemicals. This written document is called a Chemical Hygiene Plan (CHP). A Chemical Hygiene Officer (CHO) must be appointed to develop, implement, and maintain the CHP. The Laboratory Standard also requires record keeping, employee information and training, use of personal protective equipment, labeling and hazard identification, exposure monitoring, and medical surveillance.

B. Scope

A hazardous chemical is defined by OSHA as a substance for which there is statistically significant evidence, based on at least one scientific study, showing that acute or chronic harm may result from exposure to that chemical. This definition clearly applies to most of the chemicals typically used at Holy Cross. The locations covered by the CHP are in the departments of Chemistry, Biology, Physics, Psychology, Visual Arts, and Theater. People who work regularly within these areas must follow the rules of the CHP. In addition, this also includes personnel such as custodial, maintenance and repair personnel who spend a significant amount of their time within a space where chemicals are used or stored. The primary emphasis of the CHP is on administrative controls necessary to protect workers from overexposure to hazardous substances. Each department can use this CHP as a guide to develop their own specific CHP or safety manual.

2. Responsibilities

The responsibility for chemical safety rests at all levels, from the highest administrative level to the individual person. The specific aspects of this responsibility are assigned to those people best suited to carry them out.

A. The College President has the ultimate responsibility for the safety and health of the faculty, staff, and students at the College of the Holy Cross.

B. The Vice President for Academic Affairs and Dean of the College has the responsibility to appoint the CHO and ensure that the CHP is written, implemented, and updated.

C. The Chemical Hygiene Officer has the direct responsibility to write, implement, and update the CHP. The CHO will provide technical advice with regard to chemical safety as well as current legal requirements concerning regulated substances. The CHO will work with departments to develop and implement standard operating procedures (SOPs) for the handling and storage of hazardous materials and hazardous waste. The CHO has the right to identify and minimize dangers to persons working in the laboratories, studios and theater and suspend operations that do not conform to the CHP. He/she will notify the Dean of the College of unresolved chemical safety issues. In addition, the CHO will maintain a master inventory for all chemicals used at Holy Cross. He/she will maintain inspection, training, and medical documentation as well as accidents, spills, and emergencies. The CHO also has the responsibility to coordinate the creation and closing of all laboratories, studios, and theater.

D. The Chemical Safety Committee will be comprised of the CHO, Associate Director of Physical Plant, a member of Public Safety, and representatives from each of the following departments: Chemistry, Biology, Physics, Psychology, Theater, Visual Arts, and Theater. The committee has the responsibility, at least annually, to review the CHP and recommend any updates. The CHO will work with the committee members to implement the standard operating procedures. Members also have the responsibility to annually review the safety protocols and accident reports, and to discuss safety issues with members of their departments.

E. The Department Chair is responsible for chemical safety in his/her department and must understand the goals of the CHP. That means the Department Chair shall ensure the completion of an annual inventory of all chemicals, notify the CHO of the creation or closing of laboratories, ensure the hazardous material and safety training of all personnel, and require routine inspections.
F. Laboratory, Studio and Theater Personnel: Research Advisors, Supervisors, and full-time Research Assistants are responsible for understanding and following the safety training and SOPs. They are directly responsible for the implementation of the procedures and requirements of the CHP. They must understand the function and proper use of all personal protective equipment (PPE) and wear them in accordance with the standard operating procedures. They must know where the safety equipment and evacuation routes are for their areas and periodically check to be sure the emergency equipment is present, unobstructed and inspected. They must notify the CHO, Public Safety and the Department Chair of all accidents, reportable spills and unsafe conditions.

G. Students who work in a room with chemicals must follow the procedures and guidelines of the CHP. They must understand the function of PPE and wear the appropriate equipment. Knowledge of the evacuation routes and location of safety equipment is required. They must notify an employee who will then notify the CHO, Public Safety, and the Department Chair of accidents, reportable spills and unsafe conditions. Students must be trained and advised of the specific requirements within their Department Safety Manual.

H. Custodians, Repair Personnel, and Public Safety Officers must receive annual training with regard to general safety rules and regulations.

I. Outside contractors must follow the general safety rules and regulations.

J. Visitors are not allowed in laboratories or studios without a Holy Cross employee escort. No children are allowed in these areas unless they are participants in one of the College’s programs or functions. Pets are not allowed.

3. General Principles
A. Minimize routine exposure
 It is important to minimize all chemical exposures. Few chemicals are without hazards, therefore general procedures for handling all hazardous chemicals must be followed. Exposure should be minimized; even for substances of no known significant hazard. For work with substances which present special hazards, additional precautions must be taken. Personal Protective Equipment (PPE) must be used in accordance with standard operating procedures. There must be no eating, drinking or smoking in these areas. Inhalation of chemicals and direct skin contact with chemicals should be avoided. Use of hoods or other ventilation devices is recommended to prevent the release of airborne substances. If in doubt about any operation, chemical use, or safety issue, ask before proceeding.

B. Avoid Underestimation of Risk
 Most chemicals in a laboratory, studio or theater can present a hazard if used or stored improperly. Chemicals purchased by manufactures will have the appropriate warnings on the labels and Safety Data Sheets (SDSs). However, new and untested chemicals may be used or produced in the laboratory in which the hazards are unknown. It is important to treat these substances as potentially toxic. In addition, many mixtures are used or prepared. All mixtures should be treated as though they are more toxic than their most toxic component.

C. Provide Adequate Ventilation
 The best way to prevent exposure to airborne substances is to prevent their escape into the working atmosphere by the use of hoods and other ventilation devices. The Permissible Exposure Limits (PELs) of OSHA and the current Threshold Limit Values (TLVs) of the American Conference of Governmental Industrial Hygienists must not be exceeded. Refer to specific SDSs for these values.

D. Chemical Hygiene Program
 A Chemical Hygiene Plan must be written and maintained by the College. There must be at least yearly reviews of the CHP and adjustments made when necessary. All personnel working with hazardous chemicals in laboratories, studio and theater must follow the rules of the CHP.
4. Components of the Chemical Hygiene Plan
 A. Basic Rules and Procedures
 The following are general safety and health rules that must be followed for essentially all who work with hazardous chemicals. It is required that employees review and comply with these basic safety rules. Personnel may need to modify these rules to provide additional protection from chemical and physical hazards associated with the specific operation being conducted.
 B. Personal apparel
 Shoes must be worn at all times: no sandals, perforated or open-toed shoes. The specific type of shoes, length of shorts, skirts, dresses or sleeves is determined by faculty and supervisors. Short dresses, skirts, shorts, and tank tops, or clothing that leave the mid-section and chest area exposed should be discouraged. For those who work with highly hazardous materials or processes, stricter personal apparel regulations, such as requiring clothes that fully cover legs and upper body or use of laboratory coats with long sleeves, must be determined and enforced. Loose clothing is also a hazard and should be avoided. Long hair should be tied back to reduce the risk of catching on fire or becoming contaminated with chemicals.
 C. Preventing chemical exposure
 It is important to develop and encourage safe habits. Exposure to chemicals by inhalation, absorption through skin or ingestion should always be avoided. Chemicals must not be smelled or tasted. Eating, drinking, chewing gum, or application of cosmetics is prohibited in areas where hazardous materials are used or stored. Hands should be washed thoroughly after handling any chemical; especially before eating or drinking. Storage or consumption of food or drinks in rooms with chemicals is prohibited. Refrigerators used for chemical storage must be labeled. Mouth suction for pipetting or starting a siphon is prohibited. Proper gloves and goggles must be worn. A visual inspection of gloves and glove boxes should be done before use. Hoods should be used as much as possible and when required as a result of the hazards associated with the chemicals.
 D. Housekeeping
 Safety equipment must never be blocked and exits must be kept clear. Aisles, walkways, hallways, and exits must be free of chemical containers, obstructions, and tripping hazards. Spills must be cleaned up and disposed of in the proper manner and place (section 10 of CHP). Contaminated or dirty glassware should not be left in the work area. Glass must be discarded in the “Glass Only” containers. The fume hoods should not be used for chemical storage except as required and or noted by the CHO. Chemicals should be returned to their proper location after use.
 E. Choice of chemicals
 Only chemicals for which there are controls available to minimize exposure should be used. Whenever possible, less hazardous chemicals should be substituted for highly hazardous chemicals. The smallest possible quantities of chemicals possible for an experiment or technique should be used. The practice of searching for existing inventories and use of chemicals in stock before purchasing new chemicals should be followed. The following link from MIT can be used to investigate other suggestions concerning chemical choices: http://web.mit.edu/environment/reduce/env_living.html. Refer to Appendix E for list of highly hazardous chemicals.
 F. Procedures for Procurement and Distribution of Chemicals
 Preferably, all chemicals should be received in a central location. No container should be accepted without an identifying label. All SDSs that are packaged with chemicals must be forwarded to the CHO. Barcodes must be placed on incoming chemical containers and entered into the CEMS system. When chemicals are hand carried, the container should be placed in an outside container or bucket. Plastic coated bottles should be purchased if there is a choice. When transporting gas cylinders, an appropriate hand truck should be used. The valve cover cap should remain on until the cylinder is in place.
 G. Chemical Storage
 Amounts of hazardous chemicals should be as small as possible. All containers must be in good condition and properly labeled. Storage on bench tops and in hoods is not advisable. Spill trays, secondary containment, and proper receptacles should be used. Bottles of chemicals greater than 500 mL should not be stored on shelves higher than 6 feet. Flammables must be stored in approved safety cabinets. Caustic or corrosive chemicals should be stored near the floor. Highly reactive or corrosive liquids must be stored in...
appropriate containers. Gas cylinders must be fully secured at all times and away from heat sources. The date of receipt must be added to each container of peroxide forming chemicals. Peroxide forming chemicals must be disposed a appropriate time. Exposure to heat or direct sunlight should be avoided. A list of common peroxide forming chemicals can be found in Appendix E. Toxic substances should be segregated in a well-identified area with local exhaust ventilation. Stored chemicals should be examined periodically (at least annually) for replacement, deterioration, and container integrity. Stockrooms should not be used as preparation or repackaging areas. They should be open during normal working hours and controlled by one person. Every chemical should have an identifiable storage place and be returned to that location after use. Chemicals must be stored to ensure the segregation of incompatible chemicals. Common categories for storage are: Toxic, Corrosive, Flammable, Combustible, Irritant, Reactive, and Non-hazardous. Labels must be maintained on all stored materials.

H. Equipment and glassware

Glassware should be handled and stored with care to avoid damage. It should be inspected for damage prior to each use. Damaged glassware must not be used. It must be disposed of in a designated glass-only container. Extra care should be taken with Dewar flasks and other evacuated glass apparatus. They should be shielded or wrapped to contain chemicals and fragments should an implosion occur. All high vacuum glassware should be taped. Equipment should be used only for its designed purpose. Damaged equipment or electrical equipment with frayed wiring must be discarded or repaired.

I. Unattended operations

The name for the responsible person should be posted on the door. Containment for toxic substances in the event of failure of a utility service (such as cooling water) to an unattended operation is necessary. Whenever possible, automatic shutoff devices on long term or unattended operations should be used (water, over-temperature, etc.).

J. Working alone

Faculty and supervisors should avoid working alone when working on procedures involving particularly hazardous substances and procedures. They should notify a department member or Public Safety if they choose to work alone with particularly hazardous chemicals or procedures after normal working hours. Students may work alone, but not with highly hazardous materials or processes. They must receive permission from a faculty or supervisor, indicate the type of work being done, and the frequency prior to working alone. Students must tell someone else, a friend or roommate, where they will be and for how long when working in the evening and weekend hours. Public Safety must be given names of students allowed to work in the laboratories during summer research program.

K. Personal Protection Equipment

1. Eye protection

Appropriate eye protection must be worn when handling hazardous chemicals or working with processes that may endanger the eyes. All safety glasses should comply with the Standard for Occupational and Educational Eye and Face Protection (Z87.1) established by the American National Standards Institute. Safety glasses with side shields may not be appropriate protection with some chemicals. Goggles give side and top protection from chemical splashes. Face shields should be worn when maximum protection is needed. Specialized goggles or masks should be used to protect against laser hazards and ultraviolet light sources.

2. Gloves

Appropriate gloves must be worn when the potential for contact with toxic materials exists. Different gloves provide protection from certain chemicals. Refer to the information in Appendix F on the resistance to chemicals of common glove materials. Gloves should be inspected before each use, and replaced periodically. Disposable gloves must be discarded immediately following overt contamination with highly toxic materials. Gloves should be removed before handling objects such as doorknobs, computer keyboards, telephone, etc.

3. Respirators

Fume hoods and other devices are the preferred method of control. If the engineering controls are not sufficient to provide adequate protection, testing and subsequent evaluations will be done to determine how best to correct the situation. The solutions could involve new engineering controls, a re-design of the existing
system, use of less hazardous materials, change in procedure, use of respirators, or cessation of process. If this involves the use of respirators, personnel must first undergo fit testing, medical approval, and training.

If an accident or malfunction occurs and toxic fumes are emitted, evacuation is required and Public Safety must be notified immediately.

L. Protective Equipment

1. Fume Hood

A fume hood should be used when handling toxic chemicals that could result in the release of toxic chemical vapors, fumes or dust. When working with particularly hazardous materials (Appendix B and E), a fume hood must be used. Adequate hood performance should be tested before use to see if it is functioning properly. A piece of tissue paper or other thin paper can be held at or near the surface of the hood. When the hood is working properly the paper should be drawn into the hood. The hood sash should be lowered to the height (or lower) recommended by the inspectors. If the inspection sticker is more than one year old, do not use the hood. Contact Physical Plant for repair or inspection when necessary. Materials stored in hoods should be kept to a minimum and not allowed to block vents or airflow located in the rear of the hood. The chemicals should be kept at least six inches behind the plane of the sash. No one should put their head inside an operating fume hood. Large pieces of equipment should not be placed inside the fume hood as this can change the airflow patterns and make the hood unsafe. A hood with an automatic night or timed setback should not be used when conducting long-term procedures with acutely toxic materials. Physical Plant must approve any alteration of the ventilation system.

2. Fire Extinguishers, Safety Showers, Eyewash Facilities

Everyone working in a laboratory, studio or theater should know the location of the fire extinguishers, safety showers, and eyewash stations before they begin work. Safety equipment must be accessible to everyone and the areas must be obstacle free. Portable eye wash containers are not a substitute for fixed eyewash stations. Contact Physical Plant for repair or inspection when necessary. Personnel are discouraged from extinguishing fires that occur in their work areas. **Do not use a fire extinguisher unless trained.** If a fire extinguisher is used, the CHO must be informed.

M. Labeling and Identification

Personnel must ensure that labels on containers of hazardous chemicals are not removed or displaced. Chemicals transferred from stock bottles to other secondary containers must be labeled with the identity of the chemical immediately and also must include the hazard notices such as “toxic” or “flammable.” Labeling must be consistent with the primary container. All bottles of chemicals and waste must be labeled with the name of the chemical; not the symbol. Special signs should be placed in the work areas where the hazard indicated is present: Acid/Corrosive, Corrosive, Flammable, Combustible, Carcinogen, and Chemical Storage Area. Prominent signs and labels of the following types should be posted: Emergency telephone numbers for Public Safety and Health Services, as well as location signs for safety showers, eyewash stations, fire extinguishers, and exits. There should be warning signs at areas or equipment where special or unusual hazards exist.

N. Chemical Inventory

A chemical inventory must exist for each laboratory, studio, theater and stockroom. Each year the inventory must be updated. The inventory will consist of the name of the location (building name and room number), the person’s name in charge of the room, the name of the hazardous material, the approximate amount stored or purchased, and the name of manufacturer. The CHO will keep copies of the inventories and review them. New SOPs must be written to reflect current chemical use and storage.

O. Fire, Accident, and Spill Reporting

When a fire occurs, the nearest fire alarm must be pulled and everyone must exit the building. Personnel should not attempt to put out the fire. When a major accident or spill occurs Public Safety must be notified x2222 or 508/793-2222. Public Safety will notify the appropriate person(s) from the Emergency Contact List. For more detailed information, refer to Emergency/Contingency Planning (section 10).

P. Prior Approval

Due to the variety of work being done on campus, it would be difficult and possibly unfair to apply one prior approval process. The CHO can assist in identifying situations when there should be prior approval. General guidelines and recommendations for safe handling, and information about working with select.
Q. **Procedures for Work with Particularly Hazardous Substances**

A particularly hazardous substance is one that belongs to one or more of the following categories: select carcinogens (regulated by OSHA, listed by National Toxicology Program, and listed under Group 1 of International Agency for Research on Cancer), human teratogens and reproductive toxins, severe corrosives, explosives, pyrophorics, strong oxidizers, and sensitizers. Special rules must be followed when working with these chemicals. Appendix B contains individual SOPs for Particularly Hazardous Chemicals. In addition to the general rules listed previously in this document, the following rules must be followed: All work must be done in a “designated area.” This is an area that is used exclusively for these types of substances. Fume hoods serve as designated areas for most of the rooms. The CHO must be notified of areas that are not in the fume hoods. Decontamination of equipment and glassware should be done in the hood. PPE must be removed after use and placed in appropriately labeled container when leaving the controlled area. Hands and arms must be washed before leaving the area. Public Safety, x2222, 508/793-2222 must be contacted if there is a spill. The area must be evacuated. Appendix B and D contains individual SOPs for Particularly Hazardous Chemicals.

R. **Outreach Program**

Only students working through a College sponsored program (i.e. Science Ambassadors) are permitted to conduct demonstrations or hands-on experiments that use chemicals. The students handling the chemicals must have completed the College’s chemical safety training requirements. In addition, prior to the event, the students must inform the program’s faculty advisor of the demonstrations and experiments they intend to perform as well as a list of the chemicals they will be using. The advisor will discuss how to conduct the demonstrations and experiments in a safe manner, as well as the potential hazards associated with the chemicals or procedure. The faculty advisor makes the final decision as to which activities can be done and which chemicals can be used. Also, when hazardous materials are used at any event, the advisor or another qualified employee must be present. No student will transport chemicals in a private or College owned vehicle without transportation training. Prior approval for vehicle transport must be obtained from the chemical hygiene officer.

At the event, the students must give the participants a brief overview of the safety precautions necessary to handle the chemicals and assume responsibility for ensuring the proper use of personal protective equipment. The safety data sheets (SDS) must be copied in advance and present at the function. Finally, the handling of any hazardous waste and spent chemicals must be discussed in advance with the faculty advisor and carried out properly by the appropriate person.

5. **Training and Information Program**

A. **Information**

Personnel must be provided with information about the hazards of chemicals present in their work area. This information must be provided at the time of an employee's initial assignment to a work area where hazardous chemicals are present and prior to assignments involving new exposure situations. They must be made aware of the CHP, told of its location and availability. In addition, the location and availability of reference material on the hazards, safe handling, storage and disposal of hazardous chemicals must be discussed.

B. **Training**

Personnel must be trained on the applicable details of the CHP. They must attend a Safety training session given by the CHO at the time of initial employment. Yearly re-training can be done by successfully completing an on-line quiz or attending the CHO presentation.

The training must include methods and observations that may be used to detect the presence or release of a hazardous chemical (continuous monitoring devices, visual appearance or odor of hazardous chemicals when being released, etc.), the physical and health hazards of chemicals in the work area, and the measures personnel can take to protect themselves from these hazards. Also, engineering controls, appropriate work practices,
emergency procedures, and PPE must be discussed. The location and types of reference materials related to chemical safety (such as SDSs, safety manuals, PEL for OSHA regulated substances, etc.) must be included.

Custodians and repair personnel, who occasionally do cleaning or repair work in a laboratory, studio or theater must receive initial training by the CHO. Public Safety Officers who are responsible for patrolling these rooms must also receive this training. The training must consist of methods of observation that may be used to detect the presence or release of a hazardous chemical as well as proper safety protocols for reporting an accident or spill.

Chemical Safety training for new students must be conducted annually and before chemical work is started. The training must include the location of safety equipment, rules about working alone, proper personal protection equipment, emergency procedures, and the individual hazards. Yearly re-training can be done by successfully completing an on-line quiz or attending the CHO presentation.

C. Training Records
Each department must maintain records of all training if they opt to conduct their own training; including sample agendas, sign-in sheets, and name of person conducting the training.

6. Hazardous Waste
A. Small Quantity Generator
Holy Cross is a Small Quantity Generator (SQG). This means that no more than one thousand pounds of hazardous waste and less than 2.2 pounds of acutely hazardous waste are generated each month. The goal of the waste disposal program is to dispose of chemical waste in a manner that will prevent harm to people and the environment.

B. Locations
Within each room where waste is generated there must be a specific place where waste is temporarily stored. This is called the Satellite Accumulation Area (SAA). There must be a sign identifying the area as a SAA. The waste container should be as close as possible to the area of waste generation. This space can be part of a hood area. The waste containers must be kept in a secondary container at all times. When the waste container is full, mark it for the chemical waste company to remove to the Main Accumulation Area (MAA). Do not date the bottle. The MAA is the place where the waste should be collected and stored until its final removal from the College. In the MAA, waste can be stored for up to six months before removal. The MAA is located in the basement of Haberlin Hall.

C. Labels
All waste containers must have a label that clearly defines the container as Hazardous Waste. The names of all the chemicals must be written on the label. The full chemical name(s) must be written on the label; not symbols or shorthand notations. The particular hazards of the chemicals must be checked on the label. Labels are available from the Chemical Waste Consultant or the person responsible for the MAA.

D. Chemical Waste Consultant
All hazardous chemical waste generated must be collected for characterization and disposal. A chemical waste firm that specializes in hazardous waste management periodically inspects and picks up the waste stored in the SAA and MAA. Contact the CHO or Physical Plant if there are concerns about hazardous waste inspections or disposal.

E. Disposal of Hazardous Chemicals
Hazardous chemical waste should be separated, to the extent possible, according to classes and potential hazards. Disposal by pouring hazardous waste chemicals down the drain is unacceptable. Hoods must not be used as a means of disposal for volatile chemicals. Caps should remain on the waste bottles unless waste is being added to the bottle. Only one container at a time may be used to collect one waste stream (one type of waste). The waste bottles must be placed in secondary containment.

F. Disposal of Non-Hazardous Chemicals and Materials
Gloves, paper towels, chromatographic adsorbent, glassware, filter papers, and filter aids can be placed in the trash if they are not contaminated with hazardous material. They should be cleaned or rinsed before disposal. The resulting liquid should be placed in a hazardous waste container. Refer to Appendix I for the list of solid chemicals which are not considered hazardous and are therefore suitable for disposal with regular trash.
It is impossible for custodians to distinguish between hazardous and non-hazardous wastes. Therefore, the packaging of non-hazardous solid waste for disposal must be secure and labeled with the name of the waste material. Plastic bags are an acceptable form of containment.

G. Hazardous Waste Training

Initial Hazardous waste training is required for all personnel who handle and generate hazardous waste. Yearly re-training can be done by successfully completing an on-line quiz or attending the CHO presentation.

7. Inspections

A. Purpose

In order to ensure that overall safety is being maintained, inspections must be performed. Routine inspections must be done by faculty and supervisors to ensure their areas are in compliance with the CHP. Inspections by CHO must be conducted at least yearly and may be unannounced. These shall consist of maintenance checks of safety related equipment, general safety practices, and housekeeping. If a certain concern is noted the room will be re-inspected after a determined period of time to verify that adjustments have been made. If the same problem continues to persist, the Dean of the College will be sent a report.

B. Safety Equipment

1. Chemical Fume Hoods

Fume hoods should be checked before beginning any operation. If not working properly, Physical Plant must be contacted. No work should be done in the hood until the problem has been resolved. The sash should be positioned at the proper height. The yearly inspection sticker on the side of the hood will mark the maximum height for the sash for safe operation. Annual inspections must be completed on all hoods. The inspections will be coordinated by Physical Plant. Copies of the inspections must be maintained by Physical Plant and the CHO.

2. Safety Showers

Safety showers must be tested annually. Physical Plant will coordinate the inspections. Copies of the inspections must be maintained by Physical Plant.

3. Eyewash stations

Eye wash stations should be flushed on a weekly basis by personnel to ensure proper operation. If not working properly, Physical Plant must be contacted. Annual inspections will be completed by Physical Plant. Copies of the inspections must be maintained by Physical Plant.

C. Inspections

Annual inspections of laboratories, studios and theater will be completed by the CHO. The focus should be on general safety rules. Safety equipment must never be blocked, and aisles must be free of chemical containers, obstructions, and tripping hazards. There must be proper storage of chemicals and hazardous waste. The general area should be free of dirty glassware and unused equipment. Copies of the inspections must be maintained by the CHO.

8. Medical Program

A. Personnel Rights

All personnel who work with hazardous chemicals must have an opportunity to receive medical attention if they develop signs or symptoms associated with a hazardous chemical. Medical attention is also encouraged whenever exposure monitoring reveals an exposure level routinely above the action level or PEL and whenever there is a spill, leak, explosion or other occurrence resulting in the likelihood of a hazardous exposure. Health Services at Holy Cross must be contacted. All medical examinations and consultations must be performed by, or under the direct supervision of, a licensed physician. This must be provided without cost to the employee, without loss of pay, and at a reasonable time and place. The physician should be told the identity of the hazardous chemical(s) to which the employee may have been exposed, if known, a description of the conditions under which the exposure occurred, if available, and a description of the signs and symptoms that the employee is experiencing, if any. The CHO must obtain a written statement from the examining physician concerning any work related restrictions or situations that could put the employee at an increased risk as a result of the safety incident. Finally, the CHO must be provided a statement from the physician that the employee has
been informed of the results of the medical examination and any medical condition that may require further examination or treatment.

When exposure monitoring is performed, the CHO must notify the employee of the results individually in writing or by posting in an appropriate location that is accessible to personnel. This notification must be done within fifteen working days after receipt of the monitoring results.

B. **Record Keeping**

Records must be kept by the CHO for the following medically related information: employee exposure complaints, and suspected exposures, air concentration monitoring results, exposure assessments, medical consultations and examinations. The records must be maintained for at least the duration of employment plus thirty years, and made available to personnel upon request.

9. **Record Keeping**

A. **Safety Data Sheets (SDS)**

The original SDSs must be inspected and filed by the CHO. If SDSs are shipped with any chemicals, they must be forwarded to the CHO.

B. **Inventories**

The chemical inventories must be updated and maintained each year by the CHO.

C. **Accidents/Spills**

It is the responsibility of the CHO, supervisor or faculty to record the information about accidents and spills. The CHO must maintain the accident/spill reports.

D. **Inspections**

The results of inspections of each laboratory, studio and theater must be maintained by the CHO. The date and name of the person who conducted the inspection must be listed.

E. **Training**

Records of Safety and Hazardous Waste training must be maintained by the CHO. They must include the date, names of individuals, type of training, and name of person responsible for the training.

F. **Medical Records**

All medical records of personnel who have needed medical attention as result of exposure to a hazardous substance at Holy Cross must be maintained by Health Services and the CHO. These records must be maintained for the duration of employment plus thirty years. The measurements used to monitor personnel exposures must be kept for 30 years.

10. **Emergency/Contingency Planning**

A. **Emergency Medical Response**

For emergencies such as fires, explosions, or spills, personnel should rescue anyone immediately affected by the emergencies, but only if it does not put them at risk. If trained, first aid can be administered to the victim(s). Public Safety should be contacted for transport to Health Services or a hospital, if necessary.

All major accidents, fires, explosions, and spills must be reported to Public Safety, **x2222 or 508/793-2222**. If an emergency occurs after normal working hours, Public Safety will contact the personnel responsible for the room for notification and consultation. An Emergency Contact List is maintained by the CHO and submitted to Public Safety. The list includes building name and room numbers, names of personnel responsible for those rooms, and their home (and/or cell) phone numbers. This private information will only be used when an emergency occurs. In addition, there is a list of names of people (in order or priority – Department Chair, etc.) to be called if the primary person is not available.

B. **Hazardous Material Spills**

If a spilled chemical is highly toxic or hazardous, or if there is a spill that results in injury, the Department Chair and CHO must be sent a report regardless of the amount. All spills should be considered hazards and therefore must be cleaned up promptly regardless of whether the substance is hazardous or harmless. Different chemicals require different clean-up equipment. For example, a corrosive liquid clean-up
is different from the clean-up of a spill from a flammable liquid. The CHO can provide technical advice, but is not responsible for spill clean-up. Refer to the specific SDS for more details.

1. **Major Spills**
 A major spill is defined as a spill of material that poses a significant threat to an employee’s safety or the environment. Generally it involves a large quantity of a moderately hazardous substance, or any amount of highly toxic or particularly hazardous material, or any material that may present a fire hazard, or if the material can not be recovered before being released to the environment. No attempt should be made to clean up a major spill. Everyone in the area must be notified, the area evacuated, and Public Safety contacted, **x2222 or 508/793-2222**. A meeting place must be determined at the time of the call so the caller can give details to Public Safety Officer(s). They will contact the Fire Department. In addition, Holy Cross has a contract with an outside company responsible for the clean-up of major spills of hazardous materials and waste. A report must be sent to the CHO.

2. **Minor Spills**
 A minor spill is defined as a spill of material that does not pose an immediate significant threat to an employee’s safety or the environment. If the spilled chemical is not a highly toxic material, is not spilled in large quantity, does not pose a significant fire hazard, and can be recovered before released to the environment it can be cleaned by personnel. Public Safety, **x2222 or 508/793-2222**, can be called if necessary to request professional assistance. Public Safety will contact the appropriate person(s) from the Emergency Contact List. Custodians are not permitted to clean up hazardous materials from a spill. See minor spill clean-up procedures in section 8C below.

C. **Minor Spill Clean-up**
 1. **Spill clean-up with no injury (during normal working hours)**
 If no one has been contaminated by the spill and the spill is localized, everyone should be told to evacuate the room, the employee responsible for the room should be notified, and others kept out. The employee will determine if they can clean the spill or contact Public Safety to request professional assistance. Appropriate PPE must be worn. After the spill is cleaned, the clean-up items and PPE must be disposed of in the SAA.

 2. **Spill clean-up with injury (during normal working hours)**
 If any person has been contaminated by the spill, especially the eyes and skin, the person should be taken to an eyewash or shower, and then Public Safety, **x2222 or 508/793-2222**, should be contacted. Public Safety will notify Health Services and transport the injured person if necessary. Everyone should be told to evacuate the room. The employee responsible for the room should be notified, and others kept out. Personnel can determine who will clean the spill or contact Public Safety to request professional assistance. Appropriate PPE must be worn. After the spill is cleaned, the clean-up items and PPE must be disposed of in the SAA.

 3. **Spill clean-up after normal working hours**
 If the spill occurs after normal working hours when no personnel are available, the call must immediately be made to Public Safety. Officers will contact the appropriate person from the Emergency Contact List. A meeting place must be determined at the time of the call so the caller can give details to Public Safety Officer(s). Personnel can clean up the spill or contact Public Safety to request professional assistance. Appropriate PPE must be worn. After the spill is cleaned, the clean-up items and PPE must be disposed of in the SAA.

 4. **Clean-up equipment**
 Each department should have a Group Spill Kit tailored to deal with the potential hazards of the materials being used. Gloves and goggles must be worn during any clean-up. The used clean-up items and PPE must be placed into a labeled hazardous waste container in the SAA.

 5. **Common spill clean-ups**
 a. Materials of low flammability which are not volatile or which have low toxicity (sulfuric, nitric, and hydrochloric acid, sodium and potassium hydroxide) can be neutralized with appropriate solutions and absorbed with Spill Control Pillows. Appropriate PPE must be worn. The clean-up items and PPE must be placed in a labeled hazardous waste container in the SAA.
b. Flammable solvents (petroleum ether, hexane, pentane, diethyl ether, dimethoxyethane and tetrahydrofuran) can be absorbed with Spill Control Pillows. All occupants should be immediately notified, all flames extinguished, and any spark producing equipment should be turned off if possible. Appropriate PPE must be worn. The clean-up items and PPE must be placed in a labeled hazardous waste container in the SAA.

c. Broken glass should be picked up with tongs, dust pan, or some other mechanical device. It should then be placed in a designated glass-only container.

D. Accidents

1. Eye Contact
 The eyes must be flushed with water for at least 15 minutes. Both hands should be used to hold the eyelids open so that the entire surface of the eye is rinsed. This should be done at an eyewash station. Medical attention should be sought if necessary. The MSDS should be read to determine if there is the possibility of any delayed effects.

2. Inhalation or Ingestion
 Medical attention should be sought immediately. Public Safety, x2222 or 508/793-2222, must be contacted for transportation to Health Services.

3. Skin Contact
 For spills covering small amounts of skin, the affected area should be flushed with water for at least 15 minutes. Jewelry should be removed if necessary to aid in the removal of residual materials. If there is no visible burn after the 15 minutes, the area should be washed with warm water and soap. Check the SDS to see if any delayed effects should be expected. It is advisable to seek medical attention for even minor chemical burns. For spills on clothes, no attempt should be made to wipe the clothes. They should be quickly removed while using the safety shower. Seek medical attention after 15 minutes under the shower.

E. Fires and Explosions
 If a fire breaks out, everyone should be alerted. If a person’s clothing or hair catches on fire, immediately attempt to get the person to stop, drop, and roll. Public Safety, x2222 or 508/793-2222, must be notified.

 A fire contained in a small container can often be suffocated by covering the container with a nonflammable material or item. If the fire can’t be controlled by suffocation or there is any doubt whether the fire can be controlled, the nearest emergency alarm should be pulled. No untrained personnel or students should use fire extinguishers. The building must be evacuated, and once in a safe location, Public Safety must be contacted. A meeting place must be determined and the person(s) must wait for a Public Safety Officer to arrive so the situation can be described to them.

 In the event of an explosion, the nearest emergency alarm should be pulled and the building evacuated. Once in a safe location, Public Safety must be contacted. A meeting place must be determined and the person(s) must wait for a Public Safety Officer to arrive so the situation can be described to them.

F. Biohazard Spills

1. Skin Contact
 If the skin is contaminated with blood or other potentially infectious materials, it should be washed thoroughly with soap and water. If blood or other potentially infectious material is splashed into the eyes, they must be flushed for at least 15 minutes at the eyewash station. Medical attention should be sought if necessary. Contaminated clothing should be removed and placed in a plastic bag. The bag must be labeled with hazard (i.e. Biohazard). The spill must be reported to the Department Chair and the CHO.

2. Clean-Up
 The appropriate PPE must be worn when cleaning a spill. At a minimum, this includes gloves and protective eyewear. Refer to the SDS for more detailed information. Broken glass should be picked up with tongs, dust pan, or some other mechanical device. Absorbent towels should be placed over the spill. Dilute bleach solution (1:10) or 70% ethanol solution should be poured over the absorbent towels. This should remain on for 20 minutes in order to disinfect the spill. The towels can then be placed in a plastic bag. The bag must be labeled with hazard (i.e. Biohazard). Bleach should be used again to clean the contaminated area and then rinsed with water. All PPE, towels, and other contaminated items must be disposed of as hazardous waste. Hands and any other exposed skin should be washed with soap and water before leaving the work area.
11. **Chemical Stockrooms**

A. **General Requirements**

Stockrooms are areas in which large quantities of chemicals are stored for use. Chemicals must be stored according to hazard (carcinogenic, toxic, irritant, flammable, corrosive, non-hazardous, etc). Access must be limited to authorized personnel. Stockrooms must be locked and secured when personnel are not present. A mechanical exhaust ventilation system must be operational. Emergency equipment must not be obstructed. The exits must be clearly marked and unobstructed. The rooms must be well-lit so that container labels can be easily read.

B. **Flammable Liquids Storage Cabinets**

Flammable materials must be stored in cabinets that meet OSHA and National Fire Protection Association (NFPA) specifications. Quantities of flammables stored shall not exceed the manufacturer's specification for the cabinet. OSHA and NFPA limit the size of the container for classes of flammable and combustible materials. The more fire-resistant container the larger it can be. Refer to Appendix G for further information.

C. **Flammable and Other Compressed Gases**

The names of compressed gases must be prominently posted. Flammable gas cylinders must be stored in a separate area from other types of compressed gases. Cylinders of incompatible gases must be segregated by distance. Cylinders must be grouped by the type of gas (toxic, corrosive, etc.) All compressed gases must be stored away from direct or localized heat in well-ventilated and dry areas and away from areas where heavy items may strike them. All compressed gases, including empty cylinders, must be secured in an upright position with chains, straps or special stands. The tanks must have the protective cap secured when the tanks are stored or moved. A hand truck must be used when transporting gas cylinders to and from storage areas. Empty cylinders should be separated from nonempty cylinders and labeled as empty. The valves should be closed when not in use. Lecture bottle purchases should be discouraged unless disposal arrangements have been made in advance.

D. **Oxidizers and Peroxides**

An oxidizer is a chemical which may cause the ignition of combustible substances without the aid of an external source of ignition. Also, when substances are ignited oxidizers increase the rate of burning of the materials. Some common oxidizers are: Nitric acid, sulfuric acid, and perchloric acid. Oxidizers must be stored away from incompatible materials such as: flammables and combustible materials, greases, finely divided metals, and organic liquids. Strong oxidizing agents must be stored and used in glass or other inert containers. Corks and rubber stoppers must not be used. High energy oxidizers must be segregated. Peroxides and chemicals that tend to form peroxides must be stored in airtight containers in a dark, cool and dry place. To minimize the rate of decomposition, peroxides and peroxidizable materials should be stored at the lowest possible temperature consistent with their solubility and freezing point. Liquid peroxide or solutions must not be stored at or below the temperature at which the peroxide freezes or precipitates, because peroxides in these forms are extremely sensitive to shock and heat. The date of receipt and date of opening must be added to each container of peroxide forming chemicals. Peroxide forming chemicals must be disposed of according to NFPA requirements or at first sign of peroxide formation. Ether, dioxane, and tetrahydrofuran are three common peroxide forming chemicals. Refer to specific SDSs and Appendix B for more information.

E. **Toxic Chemicals**

Extremely toxic substances must be stored in unbreakable chemically-resistant secondary containers. Adequate ventilation must be provided in storage areas especially for toxic chemicals that have a high vapor pressure. Extremely toxic chemicals must be dispensed in a fume hood.

F. **Water Reactive Chemicals**

Water reactive chemicals should be stored in a cool and dry location. They must be segregated from all other chemicals. The quantities of water sensitive chemicals stored should be minimized. These chemicals should be stored under oil at room temperature. Storage containers should be checked frequently. All water sensitive chemicals should be disposed of whenever they are no longer required for current work.
12. **Standard Operating Procedures**

A. **Definition**

Standard Operating Procedures (SOPs) describe a procedure or set of procedures to perform a certain operation. They are intended to provide guidance on how to safely work with chemicals or equipment. The OSHA Laboratory Standard requires that the CHP include specific information to help protect personnel. This is especially important if operations include the use of select carcinogens, reproductive toxins and substances of acute toxicity.

B. **SOPs details**

At a minimum, SOPs should include the following information: the name of the chemical or process, and its hazards, special hazards, use of engineering controls (such as fume hoods), required PPE, spill response measures, cleaning and waste disposal procedures. The OSHA Laboratory Standard specifies the requirement for SOPs for work involving hazardous chemicals, but SOPs should also be developed with equipment or operations that may cause any physical hazards. SOPs do not need to be too detailed. It is acceptable to point personnel to other sources of information. For example, it is sufficient to direct personnel to the location of the SDS binder for information about a certain chemical's hazards or the Operator's manual for information about a piece of equipment.
APPENDICES
APPENDIX A

COMMON ACRONYMNS
Common Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO</td>
<td>Chemical Hygiene Officer</td>
</tr>
<tr>
<td>CHP</td>
<td>Chemical Hygiene Plan</td>
</tr>
<tr>
<td>HC</td>
<td>College of the Holy Cross</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PEL</td>
<td>Permissible exposure level</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protection equipment</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold limit value</td>
</tr>
<tr>
<td>SDS</td>
<td>Safety Data Sheet</td>
</tr>
</tbody>
</table>
APPENDIX B

STANDARD OPERATING PROCEDURES

CHEMICAL TYPE
EXPLOSIVE & SHOCK SENSITIVE CHEMICALS

A. Description
Explosive substances are materials that decompose under conditions of mechanical shock, elevated temperature, or chemical action, with the release of large volumes of gases and heat. Organic peroxides are among the most hazardous substances. All organic peroxides are highly flammable, and most are sensitive to heat, friction, impact, light, as well as strong oxidizing and reducing agents. Some peroxides are m-chloroperoxybenzoic acid, benzoyl peroxide, hydrogen peroxide, and t-butyl hydroperoxide.

B. Chemical Storage
1. Stored in a cool, dry location.
2. Segregate from other chemicals.
3. Minimize quantities stored.
4. Storage containers should be checked frequently.
5. Should be disposed of whenever no longer required for current work.

C. Personal Protective Equipment
1. Eye and Face Protection
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing maybe necessary - such as long sleeves, lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety showers/Hand washing sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation
4. Fire extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Everyone must wash their hands and arms with soap and water.
 b. The work area must be cleaned after use. Disposable paper, gloves, etc. must be plastic bag, labeled, and disposed of in the SAA.
2. Waste Disposal
 Must be disposed of as hazardous waste.
WATER REACTIVE CHEMICALS

A. Description
Water reactive chemicals react vigorously with water or moist air. Refer to inventory record for specific chemicals.

B. Chemical Storage
1. Store in a cool, dry location.
2. Segregate from other chemicals.
3. Minimize quantities stored.
4. Store under oil at room temperature.
5. Check storage containers frequently.
6. Dispose of when no longer required for current work.
7. Never return excess chemicals to original container. Small amounts of impurities may be introduced into container which may cause a fire or explosion.

C. Personal Protective Equipment
1. Eye and Face Protection
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing if the possibility of skin contact is high - lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.
4. Fire extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a) Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained Read SDS.
 b) No attempt should be made to clean large spill or put out fire.
 c) Contact Public Safety 508/793-2222 or x2222, for assistance.
 d) Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a) Everyone must wash their hands and arms with soap and water.
 b) The work area must be cleaned after use. Disposable paper, gloves, etc. must be plastic bag, labeled, and disposed of in the SAA.
2. Waste Disposal
 Must be disposed of as hazardous waste.
PYROPHORIC CHEMICALS

A. **Description**
 Pyrophoric chemicals are chemicals that will ignite in air (below 130 °F) in the absence of added heat, shock, or friction. Refer to inventory record for specific chemicals.

B. **Chemical Storage**
 1. Store under an inert atmosphere or solvent as appropriate.
 2. Do not store with flammable materials or in a flammable safety cabinet.
 3. Store away from sources of ignition.
 4. Minimize quantities stored
 5. Never return excess chemicals to original container. Small amounts of impurities may be introduced into container which may cause a fire or explosion.

C. **Personal Protective Equipment**
 1. **Eye and Face Protection**
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
 2. **Gloves**
 Appropriate fire resistant gloves with chemical resistant gloves under must be worn.
 3. **Protective Clothing**
 a. Foot wear that cover top of feet.
 b. Flame resistant lab coats must be worn.

D. **Controls**
 1. **Fume Hoods and Glove Boxes**
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
 2. **Eye Wash**
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
 3. **Safety Showers/Handwashing Sinks**
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.
 4. **Fire Extinguishers**
 Personnel should not use the fire extinguishers.

E. **Emergency Procedures**
 1. **Notification**
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
 2. **Major Spill, Fire, Explosion, Injury Response**
 a. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. **Cleaning and Waste Disposal**
 1. **Cleaning**
 Employees must wash their hands and arms with soap and water.
 2. **Waste Disposal**
 Chemicals must be disposed of as hazardous waste.
OXIDIZING CHEMICALS

A. General Statement
OXIDIZING CHEMICALS are chemicals that decompose readily under certain conditions to yield oxygen. They may cause a fire in contact with combustible materials, can react violently with water, and when involved in a fire, can react violently. Refer to inventory record for specific chemicals.

B. Chemical Storage
1. Store in cool, dry location.
2. Segregate from organic or combustible materials. Oxidizers can be stored with inorganic salts.
3. Minimize quantities stored.
4. Never return excess chemicals to original container. Small amounts of impurities may be introduced into container which may cause a fire or explosion.

C. Personal Protective Equipment
1. Eye and Face Protection
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing if the possibility of skin contact is high such as long sleeves, lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 Laboratory employees must wash their hands and arms with soap and water.
2. Waste Disposal
 Chemicals must be disposed of as hazardous waste.

25
HIGHLY FLAMMABLE, FLAMMABLE & COMBUSTIBLE LIQUIDS

A. General Statement
Highly flammable liquids have a flash point below 73°F (22.8° C). Flammable liquids are chemicals that have a flash point below 100°F (38.7° C) and a vapor pressure that does not exceed 25 psig at 100°F. Combustible liquids have a flash point above 100°F. Refer to Appendix G for more information.

B. Chemical Storage
1. Store in approved storage cabinet.
2. Minimize quantities stored. No more than 10 gallons outside storage cabinet.
3. Flammable materials should be stored away from oxidizers and other incompatible materials.
4. Some flammable liquids, such as low molecular weight ethers and vinyl compounds, tetrahydrofuran, and dioxane, slowly form peroxides upon exposure to air and sunlight. Refer to SOPs for peroxides.

C. Personal Protective Equipment
1. Eye and Face Protection
 Glasses or chemical splash proof goggles must be worn. Face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing if the possibility of skin contact is high such as long sleeves, lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 Employees must wash their hands and arms with soap and water.
2. Waste Disposal
 Chemicals must be disposed of as hazardous waste.

26
CORROSIVE CHEMICALS

A. Description
Corrosive chemicals are substances that cause destruction or permanent changes in human skin tissue at the site of contact, or are highly corrosive to steel. The major classes of corrosives include strong acids, bases, and dehydrating agents.

For a more complete list refer to Appendix E.

B. Chemical Storage
1. Separate the various types of corrosives.
2. Separate acids and bases; separate organic acids from mineral acids; separate liquids and solids.
3. Corrosives should be stored using secondary containment (such as on plastic trays).
4. They should not be stored on high cabinets or shelves (above eye level).

C. Personal Protective Equipment
1. **Eye and Face Protection**
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
2. **Gloves**
 Appropriate gloves must be worn.
3. **Protective Clothing**
 a. Foot wear that cover top of feet.
 b. Additional protective clothing if the possibility of skin contact is high such as long sleeves, lab coats, or aprons.

D. Controls
1. **Fume Hoods and Glove Boxes**
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. **Eye Wash**
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. **Safety Showers/Handwashing Sinks**
 a. Rinse for minimum of 15 minutes
 b. Seek medical attention for further evaluation.
4. **Fire Extinguishers**
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. **Notification**
 a. Refer to the Incident Response and Reporting Protocol Form
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. **Major Spill, Fire, Explosion, Injury Response**
 a. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. **Cleaning**
 Employees must wash their hands and arms with soap and water.
2. **Waste Disposal**
 Chemicals must be disposed of as hazardous waste.
ACUTELY TOXIC CHEMICALS

A. Description
Acutely toxic chemicals are substances that cause adverse effects from a single exposure. Some of these substances include, but are not limited to: toxic or corrosive gases such as: fluorine, chlorine, phosgene, arsine, anhydrous hydrofluoric acid, carbon monoxide, hydrogen sulfide, unstable boron hydrides; highly reactive or explosive chemicals such as: polynitrated compounds, unstable organic peroxides, heavy metal azides or acetyldies. Other common chemicals include: benzyl chloride, bromine, dimethyl sulfide, iodine, methyl hydrazine, nickel carbonyl, organo-tin compounds, osmium tetroxide, phosphorous oxychloride, sulfuryl chloride, and thionyl chloride. Refer to Appendix E.

B. Chemical Storage
1. Store according to hazard classification.
2. Minimize quantities stored.
3. Should be disposed of whenever no longer required for current work.

C. Personal Protective Equipment
1. Eye and Face Protection
 Chemical splash proof goggles must be worn. Or face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing maybe necessary - such as long sleeves, lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by laboratory, studio or theater personnel, if trained.SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Wash hands and arms with soap and water after working with any acutely toxic chemicals.
 b. The work area must be cleaned after use.
 c. Disposable paper, gloves, etc. must be labeled, and disposed of in the SAA.
2. Waste Disposal
 Acutely toxic chemicals and contaminated materials must be disposed of as hazardous waste.
CARCINOGENS AND REPRODUCTIVE TOXINS

A. Description
A carcinogen commonly describes any substance that can cause cancer. Some common carcinogens include: acrylonitrile, benzene, chromium (VI) and its salts, and formaldehyde. Reproductive hazards are substances that affect the reproductive capabilities including chromosomal damage (mutagens) and effects on the fetus (teratogens). Some reproductive toxins include: aniline, benzene, chloroform, dimethylformamide, dimethylsulfoxide, formaldehyde, formamide, lead compounds, mercury compounds, phenol, toluene, and xylene. For a more complete list refer to Appendix E. Refer to inventory record for specific chemicals.

B. Chemical Storage
1. Store according to hazard classification.
2. Minimize quantities stored.
3. Should be disposed of whenever no longer required for current work.

C. Personal Protective Equipment
1. Eye and Face Protection
 Glasses or chemical splash proof goggles must be worn. Face shield if particularly dangerous.
2. Gloves
 Appropriate gloves must be worn.
3. Protective Clothing
 a. Foot wear that cover top of feet.
 b. Additional protective clothing may be necessary - such as long sleeves, lab coats, or aprons.

D. Controls
1. Fume Hoods and Glove Boxes
 a. Fume hoods & glove boxes are preferred method of control with sash in lowest possible position.
 b. Safety shielding is required if risk of explosion, splash hazard or a highly exothermic reaction.
 c. Portable blast shields are acceptable.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 e. Alert others. Small spill can be cleaned by lab, studio or theater personnel, if trained. Read SDS.
 f. No attempt should be made to clean large spill or put out fire.
 g. Contact Public Safety 508/793-2222 or x2222, for assistance.
 h. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 c. Wash hands and arms with soap and water.
 d. The work area must be cleaned after use.
 e. Disposable paper, gloves, paper towels, etc. must be labeled, and disposed of in the SAA.
2. Waste Disposal
 Materials must be disposed of as hazardous waste.
COMPRESSED GASES

A. Description
Cylinders of compressed gases represent high-energy sources and should be handled with regard to their potential hazards. The chemical reactivity of the gases should also be taken into account when planning for safe management and use of compressed gases.

B. Chemical Storage
1. Upright position and secured to wall or bench with chains or straps.
2. Cylinder caps or regulator on at all times.
3. In areas where they will not become overheated.
4. Transport on equipment designed for this function.

C. PPE
1. Eye and Face Protection
 Goggles must be worn. Or a face shield if particularly dangerous.
2. Gloves
 Appropriate gloves should be worn when handling hazardous materials.
3. Protective Clothing
 Closed toed shoes. Additional protective clothing if the possibility of skin contact is high.

D. Controls
1. Fume Hoods and Glove Boxes
 Fume hoods and Glove boxes are the preferred method of control with sash in lowest possible position.
 Safety shielding is required if there is a risk of explosion, splash hazard or a highly exothermic reaction. Portable blast shields are acceptable.
2. Eye Wash
 Flush eyes for a minimum of 15 minutes if contamination occur, holding eyes open. Medical attention should be sought for further evaluation.
3. Safety Showers
 Remain in shower for minimum of 15 minutes if skin or clothing is contaminated. Medical attention should be sought for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 Refer to the Incident Response and Reporting Protocol Form. First responders are Public Safety: 508/793-2222
2. Release Response
 a. Alert others in the area if a release of a hazardous gas occurs. Contact Public Safety, x2222, for assistance. Evacuate area.
 b. The caller should remain on the scene, but at a safe distance, to help direct and discuss the situation when Public Safety arrives.
 c. Consult the SDS.
A. **General Statement**
Most paints used in the Visual Arts department do not contain metal pigments and are therefore considered non-toxic. The long-term hazards of the modern synthetic organic pigments have not been well studied. Epoxy paints consist of an epoxy resin and hardener. The epoxy resins are suspect carcinogens. Epoxy hardeners may cause skin and respiratory allergies. Organic solvents (turpentine and mineral spirits) are used as thinners and for cleanup or used in spray form: fixatives, re-touching sprays, paint sprays, varnishes, and adhesive sprays. They contain toxic solvents. Turpentine can be absorbed through the skin and cause skin allergies. High concentrations of acute inhalation of mineral spirits, turpentine vapors, and other solvents can cause dizziness, headaches, drowsiness, nausea, coma, as well as respiratory irritation. Chronic inhalation of large amounts of solvents could result in brain damage, kidney damage and respiratory irritation and allergies. Odorless mineral spirits and turpenoid are less hazardous.

B. **Chemical Storage**
Materials must be stored according to the hazard classification.

C. **Personal Protective Equipment**
1. **Eye and Face Protection**
 Goggles must be worn when working with some paints and drawing materials, especially those that contain organic solvents.
2. **Gloves**
 Appropriate gloves should be worn when handling paint and drawing materials. Neoprene gloves should be worn while cleaning with turpentine or mineral spirits. Glove selection Appendix F.
3. **Protective Clothing**
 Closed toed shoes must be worn.

D. **Controls**
1. **Ventilation**
 Techniques such as turpentine washes will require a lot of ventilation. Spray fixatives should be used with a spray booth that exhausts to the outside.
2. **Eye Wash**
 Flush eyes for at least 15 minutes, holding eyes open. Seek medical attention for further evaluation.
3. **Safety Showers/Handwashing Sinks**
 a. Rinse for minimum of 15 minutes. Seek medical attention for further evaluation.
4. **Fire Extinguishers**
 Personnel should not use the fire extinguishers.

E. **Emergency Procedures**
1. **Notification**
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. **Major Spill, Fire, Explosion, Injury Response**
 a) Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b) No attempt should be made to clean large spill or put out fire.
 c) Contact Public Safety 508/793-2222 or x2222, for assistance.
 d) Remain on scene, but at safe distance, to help direct and discuss the incident with Public Safety.

F. **Cleaning and Waste Disposal**
1. **Cleaning**
 a) Wash hands and arms with soap and water.
 b) The work area must be cleaned after use.
2. **Waste Disposal**
 Some materials must be disposed of as hazardous waste.
PHOTOGRAPHY

A. General Statement
Photography uses many different kinds of chemicals. Developer powders are highly toxic by inhalation, and moderately toxic by skin contact. Common accelerators are highly corrosive by skin contact or ingestion. Antifogging agents are moderately toxic by inhalation or ingestion and slightly toxic by skin contact. Stop baths are corrosive by skin contact, inhalation and ingestion. Fixing baths are moderately toxic by ingestion or inhalation and slightly toxic by skin contact. Intensifiers are highly corrosive and causes skin and eye irritation. Some are probable human carcinogens.

B. Chemical Storage
Materials must be stored according to the hazard classification.

C. Personal Protective Equipment
1. Eye and Face Protection
Goggles must be worn when working with most photography materials. Many chemicals are moderate to severe are skin and eye irritants.

2. Gloves
Appropriate gloves must be worn when handling photography materials. Most developers are moderately to highly toxic by ingestion and caustic to the skin. The selection of glove materials should be made from Appendix F.

3. Protective Clothing
Close toed shoes must be worn. Additional protective clothing, such as aprons or full-length arm protection, should be worn if the possibility of skin contact with hazardous material is high.

D. Controls
1. Ventilation
Local exhaust ventilation is required for mixing of chemicals and color processing. Toning solutions must be used with local exhaust ventilation. All darkrooms require good ventilation to control the level of acetic acid vapors and sulfur dioxide gas produced in photography. All baths should be covered when not in use to prevent evaporation or release of toxic vapors and gases.

2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.

3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.

4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.

2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Remain on scene, but at safe distance, to discuss the incident with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Wash hands and arms with soap and water.
 b. The work area must be cleaned after use.

2. Waste Disposal
 Most materials must be disposed of as hazardous waste.
CERAMICS

A. General Statement
Clays are minerals that contain large amounts of crystalline silica. There have been known cases of silicosis from chronic inhalation. Silica dust exposure is not hazardous by skin contact or ingestion. Asbestos is extremely toxic by inhalation and possibly by ingestion. Other components added to modify clay properties are small amounts of minerals which are highly toxic by inhalation or ingestion.

Common fluxes include lead, barium, lithium, calcium and sodium. Certain colorant compounds of particular metals are known or probable human carcinogens. Luster or metallic glazes are fired in a reduction atmosphere. These glazes can contain mercury, arsenic, highly toxic solvents such as aromatic and chlorinated hydrocarbons, and oils such as lavender oil. The common metals are often resinate of gold, platinum, silver, and copper. Some underglazes and overglazes are made up of mineral spirits as the solvent which are both flammable and hazardous.

B. Chemical Storage
Materials must be stored according to the hazard classification.

C. Personal Protective Equipment
1. Eye and Face Protection
 Goggles must be worn when working with most ceramic materials. Clays are moderate to severe skin and eye irritants. Solvents are irritants.

2. Gloves
 Appropriate gloves should be worn when handling ceramic materials. Most chemicals are moderately toxic by ingestion and caustic to the skin. Lead compounds are highly toxic by inhalation or ingestion. The selection of glove materials should be made from Appendix F.

3. Protective Clothing
 Closed toed shoes must be worn.

D. Controls
1. Ventilation
 Local exhaust ventilation is required.

2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.

3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.

4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.

2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss incident with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Wash hands and arms with soap and water.
 b. The work area must be cleaned after use.

2. Waste Disposal
 Most materials must be disposed of as hazardous waste.
SCULPTURE

A. **General Statement**

Plaster is slightly irritating to the eyes and respiratory system. Sandstone, soapstone, and granite are highly toxic by inhalation because they contain large amounts of free silica. Limestone is less hazardous. Alcohol and acetone are slightly toxic solvents by skin contact and inhalation. Benzine and turpentine are moderately toxic by skin contact, inhalation, and ingestion. Carbon tetrachloride is extremely toxic, possibly causing liver cancer and severe liver damage, even from small exposures. Turpentine can also cause skin allergies and be absorbed through the skin. High concentrations of acute inhalation of mineral spirits, turpentine vapors, and other solvents can cause dizziness, headaches, drowsiness, nausea, coma, as well as respiratory irritation. Chronic inhalation of large amounts of solvents could result in brain damage, kidney damage and respiratory irritation and allergies. Odorless mineral spirits and turpenoid are less hazardous.

B. **Chemical Storage**

Materials must be stored according to the hazard classification.

C. **Personal Protective Equipment**

1. **Eye and Face Protection**

 Goggles must be worn when working with sculpture materials, particularly the solvents and benzene compounds. Components of clay are skin and eye irritants.

2. **Gloves**

 Appropriate gloves should be worn when handling plaster materials. Most chemicals are moderate to highly toxic by ingestion and caustic to skin. Glove materials should be made from Appendix F.

3. **Protective Clothing**

 Close toed shoes must be worn.

D. **Controls**

1. **Ventilation**

 Sandstone, soapstone, and granite are highly toxic by inhalation. Grinding and sanding, especially with machines can create fine dust from the stone. Make sure there is adequate ventilation.

2. **Eye Wash**

 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.

3. **Safety Showers/Handwashing Sinks**

 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.

4. **Fire Extinguishers**

 Personnel should not use the fire extinguishers.

Emergency Procedures

1. **Notification**

 a. Refer to the *Incident Response and Reporting Protocol Form*.
 b. First responders are Public Safety: 508/793-2222 or x2222.

2. **Major Spill, Fire, Explosion, Injury Response**

 a. Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Remain on scene, but at safe distance, to discuss incident with Public Safety.

F. **Cleaning and Waste Disposal**

1. **Cleaning**

 a. Wash hands and arms with soap and water after working with any acutely toxic chemicals.
 b. The work area must be cleaned after use.

2. **Waste Disposal**

 Most materials must be disposed of as hazardous waste.
A. General Statement
Lead pigments can cause anemia, gastrointestinal problems, peripheral nerve damage (and brain damage in children), kidney damage and reproductive system damage. Other pigments may cause lung cancer if inhaled. Chromate pigments may cause skin ulceration and allergic skin reactions. Organic solvents are the most hazardous chemicals used in printmaking. They are used to dissolve and mix with oils, resins, varnishes, and inks and to clean. Repeated or prolonged skin contact with solvents can cause dermatitis. Inhalation of solvent vapors in high concentrations can cause dizziness, nausea, fatigue, loss of coordination, or coma. Many solvents are toxic if ingested. Most solvents are flammable or combustible. Etching involves use of dilute nitric acid. Concentrated acids are corrosive to the skin, eyes, respiratory system and gastrointestinal system.

B. Chemical Storage
Materials must be stored according to the hazard classification.

C. Personal Protective Equipment
1. Eye and Face Protection
 Goggles must be worn when working with some materials. Repeated or prolonged skin contact with solvents can cause dermatitis. Many solvents can also be harmful through skin absorption.
2. Gloves
 Appropriate gloves should be worn when handling plaster materials. Most chemicals are moderately toxic by ingestion and are caustic to the skin. Glove selection should be made from Appendix F.
3. Protective Clothing
 Closed toed shoes must be worn.

D. Controls
1. Ventilation
 Inhalation of solvent vapors is the major way in which solvents are harmful. Make sure there is adequate ventilation.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Wash hands and arms with soap and water after working with any acutely toxic chemicals.
 b. The work area must be cleaned after use.
2. Waste Disposal
 Most materials must be disposed of as hazardous waste.
WELDING

A. General Statement
Welding can result in potential health, safety, and property hazards from the fumes, gases, sparks, hot metal and radiant energy produced. During the welding process compressed gases are used. A fireguard should be assigned while welding is in operation.

B. Chemical Storage
Materials must be stored according to the hazard classification.

C. Personal Protective Equipment
1. Eye and Face Protection
 Goggles, face shields, welding helmets or a combination of these must be worn when welding. Welding helmets must be worn when cutting is involved.
2. Gloves
 Appropriate gloves should be worn when welding to prevent burns. Hole-free insulating gloves are recommended. The selection of glove materials should be made from Appendix F.
3. Protective Clothing
 While welding, closed toed shoes must be worn. Additional protective clothing, such as aprons or full-length arm protection, should be worn if possibility of skin contact with sparks is high.

D. Controls
1. Ventilation
 Inhalation of solvent vapors is the major way in which solvents are harmful. Make sure there is adequate ventilation.
2. Eye Wash
 a. Flush eyes for at least 15 minutes, holding eyes open.
 b. Seek medical attention for further evaluation.
3. Safety Showers/Handwashing Sinks
 a. Rinse for minimum of 15 minutes.
 b. Seek medical attention for further evaluation.
4. Fire Extinguishers
 Personnel should not use the fire extinguishers.

E. Emergency Procedures
1. Notification
 a. Refer to the Incident Response and Reporting Protocol Form.
 b. First responders are Public Safety: 508/793-2222 or x2222.
2. Major Spill, Fire, Explosion, Injury Response
 a. Alert others. Small spill can be cleaned by studio personnel, if trained. Read SDS.
 b. No attempt should be made to clean large spill or put out fire.
 c. Contact Public Safety 508/793-2222 or x2222, for assistance.
 d. Remain on scene, but at safe distance, to help direct and discuss the situation with Public Safety.

F. Cleaning and Waste Disposal
1. Cleaning
 a. Wash hands and arms with soap and water after working with any acutely toxic chemicals.
 b. The work area must be cleaned after use.
2. Waste Disposal
 Most materials must be disposed of as hazardous waste.
APPENDIX C

STANDARD OPERATING PROCEDURES

EQUIPMENT
Fume Hoods

Keep the Sash Down
For hoods that have a movable front sash, keeping the opening as small as reasonably possible usually increases the flow rate through the aperture and enhances effectiveness. The sash also operates as a safety shield. It is strongly recommended that the hood sash be closed to within one or two inches when not in use.

Keep Laboratory Doors and Windows Closed
In closed buildings, ventilation and fume hood systems are usually designed on the assumption that doors to the laboratory and windows will be in the closed position. If the doors and windows are left open, unplanned airflow patterns may degrade the efficiency of a hood.

Limit Traffic
Traffic or movement in front of the hood induces turbulence and can limit the effectiveness of the hood. Traffic should be limited as much as possible.

Reduce Clutter
The presence of objects in the hood tends to increase turbulence, so the more cluttered the working surface, the lower the efficiency and the less protection there is. The number of objects in a hood should be kept to a workable minimum. Keep the number of chemicals stored in a hood as low as possible. Not only does such storage decrease hood efficiency, but it also increases the possibility and seriousness of accidental fires. Solvents should be placed in vented cabinets rather than wasting useful and expensive hood space. When circumstances dictate such storage of chemicals, they should not be placed near the exhaust slots or in the front six inches of the hood.

Work Far into the Hood
Putting chemicals and equipment as far back into the hood as practical substantially increases the effectiveness of the hood. By moving back six inches into the hood’s interior, the hood’s effectiveness can be greatly improved. Operations should not be carried out within six inches from the plane of the sash.

Explosions
The glass sash offers protection from accidents and, when possible, it is safest to keep the sash between your face and the equipment. The glass face, however, is not designed to protect against explosions. When an explosive hazard is present, rounded safety shields should be placed between the operator and the equipment. It should be as close as possible to the plane of the hood sash. Full-face protection should also be used in such circumstances. Evaporations and digestions involving perchloric acid must not be carried out in hoods. Perchloric acid can condense in the ductwork and result in an explosion hazard.

Exhaust
Care should be taken with the use of paper products, aluminum foil and other lightweight materials within the hood. For example, a single piece of Kleenex, if sucked into the exhaust ducts, can potentially cause a reduction in the velocity of air flow.

Drains
Run water in hood drains at least once a week if the drains are not normally used. This is to prevent the drain traps from drying out and possibly perturbing airflow in the system.

Annual Testing
There is an annual testing of fume hoods. If the existing inspection sticker on a fume hood indicates a year or more has passed since it last inspected that hood, or doesn’t have an inspection sticker, contact Physical Plant.

Mechanical Problems
If your fume hood suddenly seems to stop working and you suspect mechanical problems, contact Physical Plant. Remove all chemicals from the hood if maintenance workers are going to be working on the hood system.
2. GLOVE BOX

Description
A glove box or dry box is a highly specialized piece of equipment that is used to provide an environmental barrier that can be used to enclose toxic or reactive chemicals or to exclude normal atmospheric components.

Chemical Storage
Special Storage
Dry Boxes should not be used for chemical storage unless inert atmospheres are required.

Specific Procedures
1. All new users should receive training before operating the glove box. The Research Advisor or a very knowledgeable laboratory employee should supervise new users until the new user is ready to work alone. All precautions in dealing with high pressure/vacuum equipment must be followed in the use of cylinders and pumps that are attached to the box.
2. The level of oxygen and water should be checked periodically, especially if no sensors are installed. The system should be regenerated at the first indication of deterioration of the inert atmosphere.
3. Periodically check the quality and integrity of the gloves.
4. Use the best quality nitrogen or argon.
5. Do not contaminate the inside of the box. Spills should be cleaned up immediately and the waste removed from the box as soon as possible. Spilling reactive chemicals (especially volatile or sublimable ones) should be avoided at all cost.
6. Minimize the use of volatile solvents. All containers should be kept closed. Syringes and disposable pipettes used should be deposited in a waste jar that can be tightly shut (so that evaporation of solvent from these can be minimized) and should be removed from the box as soon as possible. Halogens, sulfur and phosphorus containing materials are particularly harmful to the regeneration system.
7. Glove box is not a storage place. Keep only essential items needed for current use.

Specific Operating Instructions
1. The Glove box should be under positive pressure at all times. The small antechamber should always be left under nitrogen, by evacuating it at least for one minute per each cycle three times. Whenever the big antechamber is left under air, it should be kept under reduced pressure (-10 to -20 in Hg) to avoid accidently opening the inside door by mistake. If the status of the antechamber is not certain, always assume it is under air.
2. Materials from the freezer should be warmed up to room temperature before taking in through the antechamber and opening inside the box.
3. The caps of all the bottles in dry box should be closed tightly and sealed with electrical tape to avoid contamination of inert atmosphere by solvent vapors.
4. All materials should be dry.
5. When needles or cannulas are used in glove box, extreme care must be used not to make holes in the gloves.
6. Keep the dry box clean. Do not leave anything (e.g., used pipettes, contaminated spatulas, vials containing chemicals, reagents, solvents, rubber bulbs, etc.) except a reaction in progress on/around the stirring/hot plate for next person. The working area on/around the stirring/hot plate and the balance, should be kept clean by wiping off solid waste and solvent residues.
Vacuum Work

When a system is under vacuum, the pressure is higher on the outside than on the inside. Any evacuated system must be regarded as an implosion hazard.

Glass containers:
Thick walled glassware should be used to reduce the chances of an implosion. The containers should be checked for star cracks, scratches, or etching marks. It is advisable to wrap the glass containers with friction tape.

Dewar Flasks:
These containers should be shielded with either friction tape, metal or plastic mesh prior to use.

Desiccators:
These containers should be made of Pyrex or similar glass. Wrapping with friction tape or placing in an enclosed shield will reduce the risk of injury.

Cold Traps:
Cold traps are containers used to trap materials between a vacuum system and a vacuum pump. They should be checked regularly to guard against their becoming plugged by the freezing of material collected in them. It is recommended to use isopropanol or ethanol rather than acetone with dry ice. They are less toxic, less flammable, and less prone to foaming. The system must always be open to air. After using a cold trap the system must be vented. Extreme care should be used when using liquid nitrogen as a trap. Oxygen may condense and if it comes in contact with organic material it may explode.
COMMON ELECTRICAL EQUIPMENT

Vacuum pumps:
The inlet line from the system should be fitted with a cold trap to collect volatile substances and minimize the amount that enters the vacuum pump. The output should be vented to an air exhaust system. The pump oil should be changed frequently to avoid contamination. The contaminated oil should be placed in a waste container and labeled properly for disposal. Pumps with belts should have protective covers over them.

Drying Ovens:
Ovens should not be used to dry any substances that have even moderate volatility. Substances that might pose a threat because of acute or chronic toxicity should not be dried in an oven unless special precautions have been taken to vent the atmosphere in the oven. Glassware that has been rinsed with organic solvents should not be placed in the oven unless it has been rinsed with water afterwards. Household ovens should not be used as they do not have the same built-in safety devices against sparking as laboratory designed ovens. Therefore they should not be used in the laboratory.

Refrigerators:
No food or beverages should be stored in laboratory refrigerators. A flammable storage refrigerator must be used; never a kitchen refrigerator. Laboratory refrigerators should be equipped with heavy-duty cords, and preferably should be protected by their own circuit breaker. Uncapped containers should never be placed in the refrigerator. The caps should form a permanent seal in case the container is tipped over. All containers must be marked with chemical name and safety hazards.

Stirring and mixing devices:
These include magnetic stirrers, shakers, small pumps for liquids, and rotary evaporators. They are normally used in operations that occur in the hood. Only spark-free induction motors should be used in these devices.

Hot plates and heating mantles (thermowells):
Only hotplates and heating mantles with fully enclosed heating elements can be used. For heating mantles with fiberglass cloth, check to make sure the coating is not worn or broken and that no water or other chemicals are spilled in the mantle. Heating mantles should never be plugged directly into a 110-V line. A variable autotransformer should be used to control the input voltage.

Oil baths:
A saturated paraffin oil is often used for temperatures below 200°C and silicone oil for temperatures up 300°C. A thermometer or other temperature recording device should be used to ensure that the temperature does not exceed the flashpoint of the oil being used. A metal pan or heavy-walled porcelain dish should be used for the oil. The oil bath should be supported on a laboratory jack so it can be easily removed from the heat source if necessary. The heat source should be hotplate, nothing with bare wires. Caution should be used around water as oil can be splattered over a large area.

Air baths:
The heating element must be completely enclosed. The connection to the air bath from the variable transformer must be electrically and mechanically secure. If glass vessels are used, they must be completely wrapped with a heat resistant tape.

Heat guns:
These devices are not usually spark free. The heating coil becomes red-hot during use and it not enclosed. Heat guns always pose a serious spark hazard. Never use a heat gun on open containers that hold flammable liquids or where there are appreciable flammable vapors. Household dryers should only be used if they have three-conductor or double-insulated line cords.
Use and Disposal of Sharps

To prevent needle stick injuries:

- Avoid using needles whenever possible.
- Do not bend, break, or otherwise manipulate needles by hand.
- Do not recap needles by hand. Do not remove needles from syringes by hand.
- Immediately after use, discard needle and syringe (whether contaminated or not) into puncture resistant sharps containers.
- Never discard sharps into regular trash.
- Never discard sharps into bags of biological waste.
- Do not overfill sharps containers. Close completely when they are ¾ full.

In the event of a needle stick injury:

- Wash thoroughly with soap and water. Notify personnel and/or immediately call Public Safety, 508/793-2222 or x2222, for assistance.

Is it a Sharp, Laboratory Glass or Plastic Pipette Tip?

This policy describes the disposal of sharp waste as part of the Biohazardous Waste Program, in compliance with 105 Code of Massachusetts Regulation 480.200 (E). There is a difference between "sharps" waste, "laboratory glass" waste and “plastic pipette tips” and it is important to understand the difference and handle these wastes accordingly.

SHARPS
"Sharps” are a restricted waste and must not be disposed in the regular waste stream. The term "sharps" is a regulatory waste classification associated with those instruments used to puncture, cut, or scrape body parts and that, as waste, can cause punctures or cuts to solid waste handlers or the public. The sharps definition includes, but is not limited to, the following "SHARPS" items:

The following items **whether contaminated with biological materials or not** are considered sharps:
- Syringes, with or without needles (syringe components, suture needles, pen needles);
- Needles with attached tubing;
- Scalpels, razor blades, and lancets.

The following items are considered **sharps ONLY WHEN CONTAMINATED with biohazardous materials**:
- Broken glassware, glass Pasteur pipettes, splintered plastic pipettes, empty blood vials;
- Glass slides and covers.

Note: Triumvirate Environmental removes full sharps containers at end of each semester. Contact Jamie Herrick if you need the sharps containers removed from your laboratory or studio.

LABORATORY GLASS
Uncontaminated, non-sharp and unbroken and broken “Laboratory Glass” is not a restricted waste and can be disposed in the regular waste stream after placement in Glass Only container.

Glass Pasteur pipettes and glass capillary tubes and glass slides and covers may be managed with uncontaminated broken laboratory glass if they are not contaminated with biohazardous materials. If used with chemicals, the pipettes must be empty. If used with radioactive materials, the pipettes may not be disposed as “Laboratory Glass” but must be managed with other radioactive waste.

PLASTIC PIPETTE TIPS
Uncontaminated plastic pipette tips are not a restricted waste and can be disposed in the regular waste stream after placement in a container which will eliminate the potential of punctures and cuts to solid waste handlers or the public, such as the Glass Only containers or designated container.
AUTOCLAVE PROCEDURES

Autoclave Safety
Caution: Autoclaves may cause serious burns
To Prevent Injury:
Loosen screw caps on bottles and tubes of liquids before autoclaving.
Check that chamber pressure has returned to zero before opening door.
Wear eye and face protection.
Stand behind door when opening it.
Slowly open door only a crack. Beware rush of steam.
Keep face away from door as it opens. Escaping steam may burn face.
Wait 5 minutes after opening door before removing liquids.
Liquids removed too soon may boil up and out of container, burning operator.
Autoclaves use pressurized steam to destroy microorganisms, and are the most dependable systems available for the decontamination of laboratory waste and the sterilization of laboratory glassware, media, and reagents. For efficient heat transfer, steam must flush the air out of the autoclave chamber. Before using the autoclave, check the drain screen at the bottom of the chamber and clean if blocked. If the sieve is blocked with debris, a layer of air may form at the bottom of the autoclave, preventing efficient operation.

Container Selection
Polypropylene bags
Commonly called biohazard or autoclave bags, these bags are tear resistant, but can be punctured or burst in the autoclave. Therefore, place bags in a rigid container during autoclaving. Bags are available in a variety of sizes, and some are printed with an indicator that changes color when processed.
Polypropylene bags are impermeable to steam, and for this reason should not be twisted and taped shut, but gathered loosely at the top and secured with a large rubber band or autoclave tape. This will create an opening through which steam can penetrate.

Polypropylene containers and pans
Polypropylene is a plastic capable of withstanding autoclaving, but resistant to heat transfer. Therefore, materials contained in a polypropylene pan will take longer to autoclave than the same materials in a stainless steel pan. To decrease the time required to sterilize material in these containers, remove the lid (if applicable), turn the container on its side when possible, select the container with the lowest sides and widest diameter possible.

Stainless steel containers and pans
Stainless steel is a good conductor of heat and is less likely to increase sterilizing time, though is more expensive than polypropylene.

Time Selection
Take into account the size of the articles to be autoclaved. A 2-liter flask containing 1 liter of liquid takes longer to sterilize than four 500 mL flasks each containing 250 mL of liquid.
Material with a high insulating capacity (animal bedding, high sided polypropylene containers) increases the time needed for the load to reach sterilizing temperatures.
Autoclave bags containing biological waste should be autoclaved for 50 minutes to assure decontamination.

Removing the Load
Check that the chamber pressure is zero.
Wear lab coat, eye protection, heat insulating gloves, and closed-toe shoes.
Stand behind door when opening it.
Slowly open door only a crack. Beware of rush of steam.
After the slow exhaust cycle, open autoclave door and allow liquids to cool for 20 minutes before removing.
APPENDIX D

LISTS OF REGULATED CHEMICALS
The following is a list of substances NIOSH considers to be potential occupational carcinogens.

A number of the carcinogen classifications deal with groups of substances: aniline and homologs, chromates, dintrotoluenes, arsenic and inorganic arsenic compounds, beryllium and beryllium compounds, cadmium compounds, nickel compounds, and crystalline forms of silica. There are also substances of variable or unclear chemical makeup that are considered carcinogens, coal tar pitch volatiles, coke oven emissions, diesel exhaust and environmental tobacco smoke.

Some of the potential carcinogens listed in this index may be re-evaluated by NIOSH as new data become available and the NIOSH recommendations on these carcinogens either as to their status as a potential occupational carcinogen or as to the appropriate recommended exposure limit may change.

Acetaldehyde
2-Acetylaminofluorene
Acrylamide
Acrylonitrile
Aldrin
4-Aminodiphenyl
Amitrole
Aniline and homologs
p-Anisidine
p-Anisidine
Arsenic and inorganic arsenic compounds
Arsine
Asbestos
Asphalt fumes
Benzene
Benzidine
Benzidine-based dyes
Beryllium
Butadiene
tert-Butyl chromate; class, chromium hexavalent
Cadmium dust and fume
Captafol
Captan
Carbon black (exceeding 0.1% PAHs)
Carbon tetrachloride
Chlordane
Chlorinated camphene
Chlorodiphenyl (42% chlorine); class polychlorinated biphenyls
Chlorodiphenyl (54% chlorine); class polychlorinated biphenyls
Chloroform
Chloromethyl methyl ether
bis(Chloromethyl) ether
B-Chloroprene
Chromium, hexavalent [Cr(VI)]
Chromyl chloride; class, chromium hexavalent
Chrysene
Coal tar pitch volatiles; class, coal tar products
Coke oven emissions

DDT (dichlorodiphenyltrichloroethane)
Di-2-ethylhexyl phthalate (DEHP)
2,4-Diaminoanisole
p-Dianisidine-based dyes
1,2-Dibromo-3-chloropropane (DBCP)
Dichloroacetylene
p-Dichlorobenzene
3,3’-Dichlorobenzidine
Dichloroethyl ether
1,3-Dichloropropene
Dieldrin
Diesel exhaust
Diglycidyl ether (DGE); class, glycidyl ethers
4-Dimethylaminoazobenzene
Dimethyl carbamoyl chloride
1,1-Dimethylhydrazine; class, hydrazines
Dimethyl sulfate
Dinitrotoluene
Dioxane

Environmental tobacco smoke
Epichlorohydrin
Ethyl acrylate
Ethylene dibromide
Ethylene dichloride
Ethylene oxide
Ethyleneimine
Ethylene thiourea
Formaldehyde
Gallium arsenide
Gasoline

Heptachlor
Hexachlorobutadiene
Hexachloroethane
Hexamethyl phosphoric triamide (HMPA)
Hydrazine
Kepone

Malonaldehyde
Methoxychlor
Methyl bromide; class, monohalomethanes
Methyl chloride
Methylhydrazine
Methyl iodide; class, monohalomethanes
Methyl hydrazine; class, hydrazines
4,4’-Methylenebis(2-chloroaniline) (MBOCA)
Methylene chloride
4,4-Methylenedianiline (MDA)

α-Naphylamine
β-Naphylamine
Nickel, metal, soluble, insoluble, and inorganic; class, nickel, inorganic
Nickel carbonyl
Nickel sulfide roasting
4-Nitrobiphenyl
p-Nitrochlorobenzene
2-Nitronaphthalene
2-Nitropropane
N-Nitrosodimethylamine

Pentachloroethane; class, chloroethanes
N-Phenyl-b-naphthylamine; class, b-naphthalene
Phenyl glycidyl ether; class, glycidyl ethers
Phenyldiazine; class, hydrazines
Propane Sultone
B-Propiolactone
Propylene dichloride
Propylene imine
Propylene oxide

Radon
Rosin core solder, pyrolysis products (containing formaldehyde)
Silica, crystalline cristobalite
Silica, crystalline quartz
Silica, crystalline 47ripoli
Silica, crystalline tridymite
silica, fused
Soapstone, total dust silicates

Tremolite silicates
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (dioxin)
1,1,2,2-Tetrachloroethane
Tetrachloroethylene
Titanium dioxide
o-Tolidine-based dyes
o-Tolidine
Toluene diisocyanate (TDI)
Toluene diamine (TDA)
o-Toluidine
p-Toluidine
1,1,2-Trichloroethane; class, chloroethanes
Trichloroethylene
1,2,3-Trichloropropane

Uranium, insoluble compounds Uranium, soluble compounds
Vinyl bromide; class, vinyl halides
Vinyl chloride
Vinyl cyclohexene dioxide
Vinylidene chloride (1,1-dichloroethylene); class, vinyl halides
Welding fumes, total particulates
Wood dust
Zinc chromate; class, chromium hexavalent
Modified from MIT CHP: Common Chemicals and their Hazards

Terms:

- **PHS** = Particularly Hazardous substance determination (Y or N)
- **C1** = Confirmed Human Carcinogen (International Agency for Research on Cancer)
- **C2A** = Probable Human Carcinogen (IARC)
- **C2B** = Possible Human Carcinogen (IARC)
- **N1** = Known to be human carcinogen (National Toxicology Program)
- **O** = OSHA carcinogen
- **R** = reproductive toxin
- **HAT** = highly acute toxic
- **T** = Toxic
- **COR** = corrosive

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>PH</th>
<th>S</th>
<th>C1</th>
<th>C2A</th>
<th>C2B</th>
<th>N1</th>
<th>N2</th>
<th>O</th>
<th>R</th>
<th>HAT</th>
<th>T</th>
<th>COR</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetaldehyde</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acetic acid, glacial</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acetone</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acetonitrile</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acetylene</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acrolein</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acrylamide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>acrylonitrile</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>aluminum trichloride</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ammonia (anhydrous)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ammonium hydroxide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>aniline</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>arsenic</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ars enic pentoxide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>arsenous oxide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>arsenic</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>benzene</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>benzenearsonic acid</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>beryllium</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>boron tribromide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>boron trifluoride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>bromine</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>butyl lithium</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cadmium</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cadmium bromide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cadmium chloride</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cadmium oxide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>carbon disulfide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chemical Name</td>
<td>PH</td>
<td>S</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>N1</td>
<td>N2</td>
<td>O</td>
<td>R</td>
<td>HAT</td>
<td>T</td>
<td>CO</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>Y</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>Y</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>chlorine</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloroacetic acid</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloroform</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>chloromethyl ether</td>
<td>Y</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorotrimethylsilane</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromium (III) chloride (anhydrous)</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>chromium (III) chloride (hexahydrate)</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>chromium hexacarbonyl</td>
<td>Y</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromium trioxide (& other Cr VI salts)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cobalt carbonyl</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>cyanogen bromide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclohexane</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>diazomethane</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diborane (gas)</td>
<td>Y</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>dichloromethane</td>
<td>Y</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diethyl ether (ethyl ether)</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>diethylnitrosamine</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethyl formamide</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>dimethyl mercury</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethyl sulfate</td>
<td>Y</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>dimethylacetamide</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>dimethylaniline</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethylethlenediamine</td>
<td>N</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>dioxane</td>
<td>Y</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethanol</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ethidium bromide</td>
<td>Y</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ethylene diamine</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethylene dibromide</td>
<td>Y</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethylene glycol dimethyl ether</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ethylene oxide</td>
<td>Y</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluorne</td>
<td>Y</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>fluoroacetyl chloride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formaldehyde</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formamide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formic acid</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gallium trichloride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glutaraldehyde</td>
<td>Y</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>heptane</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>hexamethyldisilane</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Chemical Name</td>
<td>PH</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>N1</td>
<td>N2</td>
<td>O</td>
<td>R</td>
<td>HAT</td>
<td>T</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>hexamethyldisiloxane</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>hexamethylphosphoramide</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexane</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>hydrazine hydrate</td>
<td>Y</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrobromic acid</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>hydrochloric acid</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrofluoric acid</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>hydrogen bromide (gas)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen chloride (gas)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen cyanide</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen fluoride (gas)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen peroxide (30 %)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrogen selenide (gas)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>hydrogen sulfide</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>iodine</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>isopropanol</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>lead and its inorganic compounds</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>lithium aluminum hydride</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lithium hydride</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manganese chloride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manganese oxide</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>mercuric chloride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>mercuric oxide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>mercury</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>methanol</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>methyl iodide</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>methyl lithium</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>methyl methacrylate</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>methyl tert butyl ether</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>methyl vinyl ketone</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nickel carbonyl</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>nickel chloride</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nickel nitrate</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitric acid</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrobenzene</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrogen dioxide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>osmium tetroxide</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxygen</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>ozone</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>palladium on carbon</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paraformaldehyde</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peracetic acid</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perchloric acid</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Name</td>
<td>PH</td>
<td>S</td>
<td>C1</td>
<td>C2</td>
<td>A</td>
<td>C3</td>
<td>B</td>
<td>N1</td>
<td>N2</td>
<td>O</td>
<td>R</td>
<td>HAT</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>phenol</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>phosgene</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>phosphine</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>phosphoric acid</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>phosphorus</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>phosphorus pentoxide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>picric acid</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>polyethyleneglycol methacrylate</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>polyphosphoric acid</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>potassium hydroxide</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>potassium</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>potassium cyanide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>potassium ferrocyanide</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>potassium hydride</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>propargyl bromide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>pyridine</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>silane</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>silver and its compounds</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>sodium</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>sodium azide (Na(N3))</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sodium cyanide (Na(CN))</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sodium hydride</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>sodium hydroxide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sulfur dioxide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sulfur trioxide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sulfuric acid</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>tert butyl hydroperoxide</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>tert butylmethyl ether</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>tetrafluoroboric acid</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>tetramethyl ethylenediamine</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>thallium compounds</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>toluene</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>toluene diisocyanate</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>trichloroethylene</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>triethanolamine</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>triethylamine</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>trifluoroacetic acid</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>trifluoromethane sulfonic acid</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>trimethyl aluminum</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>trimethyltin chloride</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>xylene</td>
<td></td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
2. **ACUTELEY TOXIC CHEMICALS**

This list is provided as a guide and is not all inclusive. Review SDSs.

<table>
<thead>
<tr>
<th>Chemical 1</th>
<th>Chemical 2</th>
<th>Chemical 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolein</td>
<td>Acrylyl chloride</td>
<td>2-Aminopyridine</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>Bromine</td>
<td>Chlorine dioxide</td>
</tr>
<tr>
<td>Chlorine trifluoride</td>
<td>Chloropicrin</td>
<td>Cyanogen chloride</td>
</tr>
<tr>
<td>Cyanuric fluoride</td>
<td>Decaborane</td>
<td>Dichloro acetylene</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td>Dimethylsulfate</td>
<td>Dimethylsulfide</td>
</tr>
<tr>
<td>Ethylene chlorohydrin</td>
<td>Ethylene fluorohydrin</td>
<td>Hexamethylene diisocyanate</td>
</tr>
<tr>
<td>Hexamethyl phosphoramid</td>
<td>Iodine</td>
<td>Iron pentacarbonyl</td>
</tr>
<tr>
<td>Isopropyl formate</td>
<td>Methacryloyl chloride</td>
<td>Methacryloxyethyl isocyanate</td>
</tr>
<tr>
<td>Methyl acrylonitrile</td>
<td>Methyl chloroformate</td>
<td>Methylene biphenyl isocyanate</td>
</tr>
<tr>
<td>Methyl fluoroacetate</td>
<td>Methyl fluorosulfate</td>
<td>Methyl hydrazine</td>
</tr>
<tr>
<td>Methyl Mercury (and other organicforms)</td>
<td>Methyltrichlorosilane</td>
<td>Methyl vinyl ketone</td>
</tr>
<tr>
<td>Nickel carbonyl</td>
<td>Nitrogen tetroxide</td>
<td>Nitrogen trioxide</td>
</tr>
<tr>
<td>Organo Tin compounds</td>
<td>Osmium tetroxide</td>
<td>Oxygen difluoride</td>
</tr>
<tr>
<td>Ozone</td>
<td>Pentaborane</td>
<td>Perchloromethyl mercaptan</td>
</tr>
<tr>
<td>Phosphorus oxychloride</td>
<td>Phosphous trichloride</td>
<td>Sarin</td>
</tr>
<tr>
<td>Sulfur monochloride</td>
<td>Sulfur pentafluoride</td>
<td>Sulfuryl chloride</td>
</tr>
<tr>
<td>Tellurium hexafluoride</td>
<td>Tetramethyl succinonitrile</td>
<td>Tetraniitromethane</td>
</tr>
<tr>
<td>Thionyl chloride</td>
<td>Toluene-2,4-diisocyanate</td>
<td>Trichloro (chlormethyl) silane</td>
</tr>
</tbody>
</table>
3. REPRODUCTIVE TOXINS

This list is provided as a guide and is not all inclusive. Review safety data sheet.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>Hydrazine(s)</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Hexafluoroacetone</td>
</tr>
<tr>
<td>Aniline</td>
<td>Halothane</td>
</tr>
<tr>
<td>Aflatoxins</td>
<td>Karathane</td>
</tr>
<tr>
<td>Benzene</td>
<td>Lead (inorganic compounds)</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>2-Methoxyethanol</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2-Methoxyethyl acetate</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Methyl chloride</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>N-Methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>Dimethyl formamide</td>
<td>Propylene glycol monomethyl ether</td>
</tr>
<tr>
<td>Di-sec-octyl-phthalate</td>
<td>Propylene glycol monomethyl ether acetate</td>
</tr>
<tr>
<td>Dinitrooctyl phenol</td>
<td>Propylene oxide</td>
</tr>
<tr>
<td>Dithane</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>2-Ethoxy ethanol</td>
<td>RH-7592</td>
</tr>
<tr>
<td>2-Ethoxyethyl acetate</td>
<td>Systhane/RH-3866</td>
</tr>
<tr>
<td>Ethylene thiourea</td>
<td>TOK (herbicide)</td>
</tr>
<tr>
<td>2-Ethyhexanol</td>
<td>Toluene</td>
</tr>
<tr>
<td>Glycol ethers</td>
<td>Vinyl chloride</td>
</tr>
</tbody>
</table>
4. Peroxide Forming Compounds considered Severe Hazards

Discard within 3 months after opening:

- Diisopropyl ether (Isopropyl Ether)
- Divinylacetylene
- Potassium Metal
- Potassium Amide
- Sodium Amide
- Vinylidene Chloride (1,1-DiChloroethylene)

Peroxide Forming Compounds considered to be Moderate Hazards

They must not be distilled without first testing for the presence of peroxides. They must be discarded or tested for peroxides within 6 months after opening:

- Acetaldehyde Diethyl Acetal (Acetal)
- Cumene (Isopropyl Benzene)
- Cyclohexene
- Cyclopentene
- Decalin (Decahydonaphthalene)
- Diethyl Ether (Ether)
- Dioxane
- Ethylene Glycol Dimethyl (Glyme)
- Ethylene Glycol Ether Acetates
- Ethylene Glycol Monoethers
- Furan
- Methylacetylene
- Methylcyclopentane
- Tetrahydrofuran (THF)

Compounds that can undergo Rapid Polymerization Initiated By Internally Formed Peroxides

Discard or test for peroxides after 6 months

- Chloroprene (2-Chloro-1,3-Butadiene)
- Styrene
- Vinyl Acetate
- Vinylpyridine

Discard After 12 Months

- Butadiene
- Tetrafluoroethylene (TFE)
- Vinylacetylene
- Vinyl Chloride
Class 4 - Flammable Solids

Class four materials are broken into three subgroups. They are:

1. Flammable Solids
2. Spontaneously Combustible
3. Dangerous When Wet

Flammable Solids are defined as wetted explosives that are Class 1 explosives when dry, but are sufficiently wetted to suppress explosive properties, self-reactive materials that are thermally unstable and can undergo strong exothermic decomposition even in the absence of oxygen, and readily combustible solids that can cause fire through friction, such as matches.

Spontaneously Combustible material is defined as "Pyrophoric" materials (liquids or solids that can ignite after coming into contact with air) and as "Self-heating" materials (substances that, when in contact with air, are liable to self-heat).

Dangerous When Wet materials are materials that, when in contact with water, are liable to become spontaneously flammable or to give off flammable or toxic gas.

The following list contains some examples of Class 4 materials, but is not all inclusive:

<table>
<thead>
<tr>
<th>Flammable Solids</th>
<th>Spontaneously Combustible</th>
<th>Dangerous When Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrocellulose membrane filters</td>
<td>Activated carbon</td>
<td>Alkaline earth metal alloys</td>
</tr>
<tr>
<td>Silicon powder</td>
<td>Lithium alkyds</td>
<td>Aluminum powder</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Pentaborane</td>
<td>Barium</td>
</tr>
<tr>
<td>Titanium Powder, wetted</td>
<td>Phosphorus</td>
<td>Calcium Hydride</td>
</tr>
<tr>
<td>Zinc resinate</td>
<td>Oily rags</td>
<td>Calcium carbide</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Potassium sulfide</td>
<td>Magnesium</td>
</tr>
<tr>
<td></td>
<td>Sodium sulfide</td>
<td>anhydrous Calcium</td>
</tr>
<tr>
<td></td>
<td>Butyl lithium</td>
<td>anhydrous Lithium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium Borohydride</td>
</tr>
</tbody>
</table>
APPENDIX F

GLOVE SELECTION
Glove Selection

Glove selection is difficult for most laboratory personnel. Different references seem to give conflicting information and the many available styles and types of glove materials make it more complicated. Many chemicals used academic research laboratories are in such small quantities that the various glove manufacturers don’t test these chemicals. The table below can be used as a guide for choosing the appropriate gloves, but it is always best to follow the manufacture’s glove chart if there is a different recommendation. The thickness of the glove, concentration of the chemical, length of exposure time, temperature and potential risk of puncture or abrasion should be taken into account when choosing a glove.

In general, latex gloves offer little protection from commonly used chemicals. The use of latex gloves is only recommended for: most biological materials, nonhazardous chemicals, and very dilute, aqueous solutions of hazardous chemicals. They offer no protection against many common laboratory chemicals. When used with some materials, they will severely degrade, often in a very short period of time. Nitrile gloves are a better choice for use with most laboratory chemicals.

E = Excellent, generally last greater than 8 hours
G = Good, generally last greater than 4 hours
F = Fair, generally last greater than 1 hour
N = Not recommended, generally don’t last an hour
? = Not tested or no information

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Rubber</th>
<th>Neoprene</th>
<th>Butyl</th>
<th>Nitrile</th>
<th>Viton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Acetic anhydride</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Acetone</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>N</td>
<td>N</td>
<td>G</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Ammonium hydroxide (<70%)</td>
<td>N</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>?</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Aniline</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>F</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>G</td>
</tr>
<tr>
<td>Benzene</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Bromine</td>
<td>?</td>
<td>F</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Butyl acetate</td>
<td>N</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Chlorine (aq)</td>
<td>?</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Chloroform</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Chromic acid (<70%)</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ethanol</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Ethyamine</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>N</td>
<td>N</td>
<td>G</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Formic acid</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Gasoline</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Hexanes</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Hydrochloric acid (< 37%)</td>
<td>G</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>E</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Iodine</td>
<td>?</td>
<td>N</td>
<td>G</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>N</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Isopropyl ether</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Maleic acid</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Mercury</td>
<td>?</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Methanol</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Methyl acetate</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Methylamine</td>
<td>N</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>?</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Pechloric acid (< 70%)</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Pentane</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Petroleum ether</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Phenol</td>
<td>N</td>
<td>G</td>
<td>F</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Photo solutions</td>
<td>G</td>
<td>E</td>
<td>?</td>
<td>E</td>
<td>?</td>
</tr>
<tr>
<td>Potassium cyanide</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Potassium hydroxide (<70%)</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td>E</td>
<td>E</td>
<td>?</td>
<td>E</td>
<td>?</td>
</tr>
<tr>
<td>Pyridine</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sodium cyanide</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Sodium thiosulfate</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>N</td>
<td>F</td>
<td>E</td>
<td>N</td>
<td>F</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>N</td>
<td>N</td>
<td>F</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>Toluene</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Xylene</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
</tbody>
</table>
APPENDIX G

FLAMMABILITY DATA
Table for Container Size:

Maximum Allowable Container Capacity for Flammable Liquids

<table>
<thead>
<tr>
<th>Container Type</th>
<th>IA Flammable</th>
<th>IB Flammable</th>
<th>IC Flammable</th>
<th>II Combustible</th>
<th>IIIA Combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>1 pint</td>
<td>1 quart</td>
<td>1 gallon</td>
<td>1 gallon</td>
<td>5 gallon</td>
</tr>
<tr>
<td>Metal or approved Plastic</td>
<td>1 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
</tr>
<tr>
<td>Safety can</td>
<td>2 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
<td>5 gallon</td>
</tr>
</tbody>
</table>

Flammable Liquid Class I A Below 73°F (22.8°C) and Boiling Point below 100°F (37.8°C)
Flammable Liquid Class I B Below 73°F (22.8°C) and Boiling Point at or above 100°F (37.8°C)
Flammable Liquid Class I C Below 100°F (37.8°C) and Boiling Point at or above 73°F (22.8°C)
Combustible chemicals - Solid, liquid or gaseous materials that burn in the presence of oxygen.

Combustible Liquid Class II Below 140°F (60°C) or at or above 100°F (37.8°C)
Combustible Liquid Class III at or above 140°F (60°C)
Combustible Liquid Class III A Below 200°F (93.4°C) or at or above 140°F (60°C)
Combustible Liquid Class III B At or above 200°F (93.4°C)

NFPA Rating
0 Materials that will not burn.
1 Materials that must be preheated before they will ignite.
2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before they will ignite.
3 Liquids and solids that can ignite under almost all temperature conditions.
4 Materials which will rapidly vaporize at atmospheric pressure and normal temperatures, or are readily dispersed in air and which burn readily.
Flammability Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>bp. °C (1 atm)</th>
<th>flash pt. °C</th>
<th>explosive limits % v/v</th>
<th>PEL</th>
<th>Flam class</th>
<th>NFPA HFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetone</td>
<td>56</td>
<td>-18</td>
<td>2 - 13</td>
<td>1000</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>hexane</td>
<td>69</td>
<td>-7</td>
<td>1 - 8</td>
<td>500</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>pentane</td>
<td>36</td>
<td>-40</td>
<td>1 - 8</td>
<td>1000</td>
<td>IA</td>
<td>0</td>
</tr>
<tr>
<td>heptane</td>
<td>98.4</td>
<td>-4</td>
<td>1 - 7</td>
<td>500</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>82</td>
<td>2</td>
<td>3 - 16</td>
<td>40</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>methylene chloride</td>
<td>40</td>
<td>none</td>
<td>12 - 23 (>100°C)</td>
<td>12.5</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>chloroform</td>
<td>62</td>
<td>none</td>
<td>none</td>
<td>50 (C)</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>ethyl ether</td>
<td>35</td>
<td>-45</td>
<td>1 - 49</td>
<td>400</td>
<td>IA</td>
<td>0</td>
</tr>
<tr>
<td>ethanol (absolute)</td>
<td>78</td>
<td>12</td>
<td>3 - 19</td>
<td>1000</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>ethanol (95%)</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>methanol</td>
<td>65</td>
<td>11</td>
<td>6 - 36</td>
<td>200</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>isopropyl alcohol</td>
<td>82</td>
<td>12</td>
<td>2 - 13</td>
<td>400</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td>66</td>
<td>-21</td>
<td>2 - 12</td>
<td>200</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>p-dioxane</td>
<td>101</td>
<td>12</td>
<td>2 - 23</td>
<td>100</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>77</td>
<td>-4</td>
<td>2 - 12</td>
<td>400</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>toluene</td>
<td>112</td>
<td>4</td>
<td>3 - 19</td>
<td>200</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>xylenes</td>
<td>140</td>
<td>25</td>
<td>1 - 7</td>
<td>200</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>benzene</td>
<td>80</td>
<td>-11</td>
<td>1 - 8</td>
<td>1</td>
<td>IB</td>
<td>0</td>
</tr>
<tr>
<td>dimethylformamide</td>
<td>158</td>
<td>58</td>
<td>2 - 15 at 100°C</td>
<td>10</td>
<td>II</td>
<td>0</td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td>80</td>
<td>-7</td>
<td>2 - 12</td>
<td>200</td>
<td>IB</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX H

EMERGENCY RESPONSE
College of the Holy Cross
Incident Response and Reporting Protocol

If there is a minor spill:
Laboratory, studio or theater employee can clean up the spill, if trained or
Public Safety (x2222) can be contacted to arrange clean-up.

If there is a major spill:
Public Safety must be notified (x2222). They will contact the Fire department or
arrange for an outside contractor to clean up the spill. CHO must be notified.

If there is an injury requiring medical attention:
Public Safety must be contacted (x2222, 508/793-2222). CHO must be notified.

CHO can be notified by email, or voice mail x2510, or sending Incident Report to PO Box 143A.

Minor Spills
A minor spill is defined as a spill of material that does not pose an immediate significant threat to an employee’s safety or the environment. If the spilled chemical is not a highly toxic material, is not spilled in large quantity, does not pose a significant fire hazard, and can be recovered before released to the environment it can be cleaned by personnel. Public Safety, x2222, 508/793-2222, can be called if necessary to request professional assistance. Public Safety will contact the appropriate person(s) from the Emergency Contact List. Custodians are not permitted to clean up hazardous materials from a spill.

Major Spills
A major spill is defined as a spill of material that poses a significant threat to an employee’s safety or the environment. Generally it involves a large quantity of a moderately hazardous substance, or any amount of highly toxic or particularly hazardous material, or any material that may present a fire hazard, or if the material can not be recovered before being released to the environment. No attempt should be made to clean up a major spill. Everyone in the area must be notified, the area evacuated, and Public Safety contacted, 508/793-2222 or x2222. A meeting place must be determined at the time of the call so the caller can give details to Public Safety Officer(s). They will contact the Fire Department. In addition, Holy Cross has a contract with an outside company responsible for the clean-up of major spills of hazardous materials and waste. The CHO must be notified.

IN THE EVENT OF AN EMERGENCY NOTIFY

PUBLIC SAFETY x2222 or 508/793-2222

If there is fire, explosion or toxic gas release:
PULL FIRE ALARM AND EVACUATE BUILDING
Contact Public Safety once in a safe location

64
COLLEGE OF THE HOLY CROSS
INCIDENT REPORT

DESCRIPTION of WHAT was being done at time of incident and HOW it occurred
(name and amount of chemical if incident involved a chemical spill/exposure)
__

__

Was there an injury? ____ Name of injured person ____________________________
Visitor______ Student______ Staff_______ Faculty______

Local Address __

Home Phone Number______________________ Holy Cross phone number________
Department__________________ Supervisor______________________________

DATE ____________________ TIME __________________________

LOCATION OF INCIDENT ___

NAME of person reporting incident__

TITLE __________________________ PHONE NUMBER ______________________

DESCRIPTION OF ACTION TAKEN
__

__

__

Public Safety contacted? ____________ Health Services contacted? ______

FOLLOW-UP RESULTS
__

__

Public Safety x2222
Health Services x2276
Chemical Hygiene Officer x2510 Forward copy to PO Box 143A
FIRST AID

First aid is designed to prevent further injury, or death, and relieve pain until medical aid can be obtained. **Pulmonary resuscitation and heart (cardiac) resuscitation** must be performed by a trained person. Contact Public Safety immediately for assistance if there are no trained employees available.

Heavy bleeding is caused by injury to a blood vessel. Have the injured person lie on the floor and apply pressure directly over the wound.

If a person **faints**, lay the person on the floor. Look for emergency medical identification (around the neck or wrist). Keep the person warm.

Shock usually coincides with a serious injury. The skin is cold and clammy and the person feels weak and the breathing is shallow. Lay the person down on the floor and elevate the legs if possible. Keep the victim warm.

If a person experiences **electric shock**, do not touch the person until he/she is separated from the current source. Throw the switch to turn off the current.

For **convulsions and epileptic seizures** lay the person on the floor. Don’t try to restrain the movements, except to prevent an injury.
APPENDIX I

HAZARDOUS WASTE
Hazardous waste should be kept to a minimum. This can be accomplished by various means. Reducing the amounts of chemicals purchased, limiting the amounts needed for processes, and urging others to share chemicals are good practices.

All waste bottles must have a Hazardous Waste label with the complete name on the label as well as the specific hazards. They must be placed in secondary containment in an SAA that is close to where the waste is generated.

There can only be one bottle of the same waste in any given room. Once a bottle is full, it must be marked with sign to be removed to the MAA.

Chlorinated and non-chlorinated waste should be kept separate.

Common Non-Hazardous Waste items

The following information, adapted from *Prudent Practices*, lists solid chemicals which are not considered hazardous and are therefore suitable for disposal with regular trash. However, neither custodians nor trash collectors can readily distinguish between hazardous and non-hazardous wastes. Therefore, the packaging of such waste for disposal must be secure. Use of plastic bags is an acceptable form of containment.

Organic Chemicals: Enzymes, sugars, sugar alcohols, starch, naturally occurring amino acids and salts, citric acid and its Na, K, Mg, Ca, NH₄ salts, lactic acid and its Na, K, Mg, Ca, NH₄ salts

Inorganic Chemicals: Silica, Sulfates: Na, K, Mg, Ca, Sr, NH₄. Phosphates: Na, K, Mg, Ca, Sr, NH₄. Carbonates: Na, K, Mg, Ca, Sr, NH₄. Oxides: B, Mg, Ca, Sr, Al, Si, Ti, Mn, Fe, Co, Cu. Chlorides: Ca, Na, K, Mg, NH₄. Borates: Na, K, Mg, Ca

Materials Not Contaminated with Hazardous Chemicals
Gloves, paper towels, chromatographic adsorbent, glassware, filter papers, and filter aids
APPENDIX J

CHECK-OUT PROCEDURES
Check-Out Procedures

The purpose of the check-out procedure is to ensure that hazardous wastes, unknown chemicals, unlabeled material, etc. are not left behind when a person leaves the College. An inspection will be conducted in advance of the person’s departure.

The check-out process can be made more efficient by:

1. Making sure all chemical reagent bottles, reaction flasks, vials, waste containers, etc. are labeled appropriately. No formulas or shorthand notations are permitted.
2. Placing all properly labeled waste bottles in the SAA for removal.
3. Removing old equipment and materials.
4. Confirming that there are no chemical spills or contamination in the room.
5. Contacting the CHO in advance for advice and suggestions concerning the check-out process.
6. Contacting the CHO for an appointment for final inspection.