Equity Return Predictability, Time Varying Volatility and Learning About the Permanence of Shocks

Daniel L. Tortorice

Department of Economics and International Business School Brandeis University

Society for Nonlinear Dynamics and Econometrics: 3-19-15
Summary

Model

- Consumption based asset pricing model
- Shocks to fundamentals permanent or temporary?
- Use Bayesian learning with a constant gain to decide between these possibilities

Results

- Spikes and crashes in prices
- Predictability of returns
- Time varying volatility
Model – Representative Agent

\[
\max \hat{E}_t \sum_{s=0}^{\infty} \delta^{s-1} \alpha \exp[-\alpha(c_{t+s} - \gamma c_{t+s-1})] \\
\text{s.t.}
\]

\[
b_{t+1} = Rb_t + c_t + (\Theta_t - \Theta_{t-1})p_t - \Theta_{t-1}d_t - y_t
\]

- Safe asset return \(R \)
- Risky asset unit net supply, stochastic dividend
Model – What Dividend Process?

Trend Stationary (Temporary Shocks)

\[d_t = \alpha^s + \gamma^s t + \rho_1^s d_{t-1} + \ldots + \rho_p^s d_{t-p} + \varepsilon_t^s \]

OR

Difference Stationary (Permanent Shocks)

\[\Delta d_t = \alpha^{ns} + \rho_1^{ns} \Delta d_{t-1} + \ldots + \rho_p^{ns} \Delta d_{t-p} + \varepsilon_t^{ns} \]
Model – Learning: Parameters

Bayesian Linear Regression

▶ Given a dividend history \(D^{t-1} \), parameter priors are:

\[
p(\Theta_{i,t-1} | \sigma^2_i, D^{t-1}) = N(\Theta_{i,t-1}, \sigma^2_i P_{t-1}^{-1})
\]
\[
p(\sigma^2_{i,t-1} | D^{t-1}) = IG(s_{t-1}, v_{t-1})
\]

▶ Parameters of the beliefs satisfy the following recursion:

\[
P_t = P_{t-1} + x_t x'_t
\]
\[
\theta_t = P_{t-1}^{-1} (P_{t-1} \theta_{t-1} + x_t y_t)
\]
\[
s_t = s_{t-1} + y_t^2 + \theta'_{t-1} P_{t-1} \theta_{t-1} - \theta'_t P_t \theta_t
\]
\[
v_t = v_{t-1} + 1
\]

▶ Here \(x_t \) is the r.h.s variables and \(y_t \) is the l.h.s. variable
Model Learning: Model Selection

Model Likelihood

\[m_{it} = \int \int L(\Theta_i, \sigma_i^2, D^t) p(\Theta_i, \sigma_i^2) d\Theta_i d\sigma_i^2 \]

Updating of model weights with a constant gain

\[\frac{w_{s,t+1}}{w_{ns,t+1}} = (1 - g) \frac{m_{s,t+1}/m_{s,t}}{m_{ns,t+1}/m_{ns,t}} \frac{w_{s,t}}{w_{ns,t}} + g \frac{m_{s,t+1}/m_{s,t}}{m_{ns,t+1}/m_{ns,t}} \]

Model Probability

\[p_{s,t} = \frac{1}{1 + w_{ns,t}/w_{s,t}} \]
Model – Model Solution

Price

\[p_t = p_{s,t} \left[E_t \sum_{s=1}^{\infty} \frac{d_{t+1}}{R^s} |S| \right] + (1 - p_{s,t}) \left[E_t \sum_{s=1}^{\infty} \frac{d_{t+1}}{R^s} |NS| \right] - \Psi \]

Consumption

\[c_t = \frac{\gamma}{R} c_{t-1} + (1 - \frac{\gamma}{R}) R - 1 \left[-Rb_t + d_t + \hat{E}_t \sum_{s=1}^{\infty} \frac{d_{t+s}}{R^s} \right] - \Phi \]
Calibration and Data – Calibration

Parameters

- \(R = 1.01 \) (Annual)
- \(\gamma = 0.7 \) (Habit)
- \(\alpha = 0 \) (Risk Neutral)
- \(g = 0.075 \) (Gain needed for perpetual learning)

Simulation

- Assume true process is stationary.
Calibration and Data – Data

NIPA - Real Per-Capita Consumption
Shiller - PE-ratio, Dividends (S&P 500)
French - Excess return on market
Mechanism: Impulse Responses
Non-Stationary vs Stationary (Dashed)
Mechanism – Dividend
Mechanism-Price: Learning vs. RE
Mechanism – Prob. Stationary
Mechanism – Dividend
Results – Return Predictability

- Returns, PE and Consumption growth predict future returns.

<table>
<thead>
<tr>
<th>Predicting Returns</th>
<th>Data</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr($r_t, r_{t+2} + \ldots + r_{t+5}$)</td>
<td>-0.2</td>
<td>-0.02</td>
<td>-0.21</td>
</tr>
<tr>
<td>corr($P/E_{10,t}, r_{t+2} + \ldots + r_{t+5}$)</td>
<td>-0.41</td>
<td>0.12</td>
<td>-0.24</td>
</tr>
<tr>
<td>corr($\Delta \text{ln}c_t, r_{t+2} + \ldots + r_{t+5}$)</td>
<td>-0.34</td>
<td>-0.04</td>
<td>-0.26</td>
</tr>
</tbody>
</table>
Results – Cons. Predictability

- PE ratio and Consumption growth forecast consumption growth.

<table>
<thead>
<tr>
<th>Predicting Consumption</th>
<th>Data</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{corr}(P/E_{10,t}, \Delta \text{ln}c_{t+3} + \ldots + \Delta \text{ln}c_{t+6}))</td>
<td>-0.16</td>
<td>0.13</td>
<td>-0.22</td>
</tr>
<tr>
<td>(\text{corr}(\Delta \text{ln}c_t, \Delta \text{ln}c_{t+3} + \ldots + \Delta \text{ln}c_{t+6}))</td>
<td>-0.23</td>
<td>-0.03</td>
<td>-0.23</td>
</tr>
</tbody>
</table>
Results – Dividend Forecasts

- PE Ratio Negatively Forecasts Future Dividend Growth.

<table>
<thead>
<tr>
<th>Predicting Dividends</th>
<th>Data</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr(P/E_{10,t}, \Delta \ln d_{t+2} + ... + \Delta \ln d_{t+5})</td>
<td>-0.25</td>
<td>0.16</td>
<td>-0.34</td>
</tr>
</tbody>
</table>
Results – Volatility

- Model amplifies return and consumption volatility

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Data</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(r_t)$</td>
<td>20.50%</td>
<td>0.13%</td>
<td>3.2%</td>
</tr>
<tr>
<td>$\sigma(\Delta \text{ln} c_t)$</td>
<td>2%</td>
<td>0.1%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Results – Kurtosis

- **Amplified Kurtosis**

<table>
<thead>
<tr>
<th>Kurtosis</th>
<th>Data</th>
<th>Confidence Bounds</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_t</td>
<td>4.1</td>
<td>[2.58 3.46]</td>
<td>3.00</td>
<td>6.37</td>
</tr>
<tr>
<td>$P/E_{10,t}$</td>
<td>4.6</td>
<td>[1.67 3.50]</td>
<td>2.79</td>
<td>3.09</td>
</tr>
<tr>
<td>$%</td>
<td>r_t</td>
<td>> 1.96*\sigma(r_t)$</td>
<td>6.2%</td>
<td>[3% 7%]</td>
</tr>
</tbody>
</table>
Results – Time Varying Volatility

- Positive autocorrelation of squared returns

<table>
<thead>
<tr>
<th>Autocorrelation of Squared Returns</th>
<th>Data</th>
<th>Standard Error</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>lag 1</td>
<td>0.079</td>
<td>0.065</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>lag 2</td>
<td>0.01</td>
<td>0.065</td>
<td>-0.002</td>
<td>0.16</td>
</tr>
<tr>
<td>lag 3</td>
<td>0.47</td>
<td>0.065</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td>lag 4</td>
<td>0.14</td>
<td>0.065</td>
<td>0.004</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Results – Time Varying Volatility

- **GARCH effects**

<table>
<thead>
<tr>
<th>GARCH</th>
<th>Data</th>
<th>Standard Error</th>
<th>RE</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garch</td>
<td>0.61</td>
<td>0.09</td>
<td>0</td>
<td>0.56</td>
</tr>
<tr>
<td>Arch</td>
<td>0.29</td>
<td>0.07</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>p-value Engle test</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Consumption Based Asset Pricing Model
- Uncertainty about permanence of shocks.
- Predictability
- Time Varying Volatility