Vaccine Coverage and Development: Value, Spending, and Financing

30 August 2021
"Planning a New Era in Vaccinology"
Palio Meeting 2021
David E. Bloom and Dan Tortorice

Key Messages

- Population health has been routinely and substantially undervalued.
- This undervaluation has led to the corresponding undervaluation of health technologies.
- The undervaluation of health technologies translates into underspending on access and innovation.
- A key step toward remediating this shortfall involves changing the way we conduct health technology assessment.

Model Description

Vaccine R&D Projects -> {Approach = k, Number = 1}

Expected Benefit of funding an additional project {k , l} =
Expected remaining harm approach k can reduce X
Fraction of remaining harm a new success would reduce X
Probability project succeeds

Cost of funding a project (fixed)

Fund highest benefit projects until benefit of next project less than cost

Count number of funded projects

Optimal Funding = # of funded projects *X* cost of funding a project

Model Based On: Athey, Baker, Castillo, Glennerster, Kremer, Lee, Snyder, Tabarrok, Tan (2020)

Parameters (Group A Streptococcus)

Approaches		Value	Basis	
	Number of Approaches	2	M-protein/Other, Steer et al. (2016)	
	Fraction of Harm Each Approach Can Alleviate	1/2	Assumption	
Probability Project Succeeds				
	Approach	90%	Consultation with industry experts	
	Overall	15%	Wong, Siah, Lo (2018), Struck (1996), Consultation with industry experts	
Fraction of Harm Success Alleviates		30%	Cannon et al. (2018)	
Total Dollar Value of Harm		2.1 trillion	Extrapolation Cannon et al. (2018), Ferranna (2021), VSLY Approach	
Development Cost of Success Inclusive of Failures		1 billion	Gouglas et al. (2018), Andre (2002), Consultation with industry experts	

All monetary values in 2020 USD

Results

Baseline Calibration	Projects Funded	Optimal Spending	Social Surplus	Internal Rate Ret.
	226	33.9 billion	1.85 trillion	23%
Sensitivity				
Harm Reduction = 70%	108	16.2 billion	1.87 trillion	29.4%
Success Probability = 5%	278	41.7 billion	1.84 trillion	21.5%
Total Strep A Harm 2x	252	37.8 billion	3.74 trillion	28.1%
Require 4 Approaches	396	59.4 billion	1.82 trillion	18.8%

Internal Rate Return (IRR) calculated assuming 10-year delay before harm reduction begins and assuming harm reduction spread out evenly over 30 years.

Conclusions

Lessons of COVID apply to other pathogens as well

• R&D costs billions for trillions in benefits—very large annual IRR

Full value of vaccination is important

- Include productivity loss, valuation of health and longevity
- Otherwise, R&D is underfunded

Optimal R&D Spending depends subtly on

- Success probabilities
- Expected harm reduction

Public vs. Private funding

- Basic research should be publicly funded since hard to patent
- Public funding of basic research can crowd-in private funding by improving the investment risk/reward ratio
- Robust public funding needed to insure equitable access

Special thanks to Steve Black, David Kaslow, Bill Hausdorff, Andrew Steer, and Jim Wassil for invaluable help in understanding strep A and the vaccine development process. Any mistakes are, however, our own.