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The finite element method is used to solve Laplace’s equation for ion-atom chambers. We first
consider a simplified model chamber for which an analytical solution can be obtained; the model
chamber serves as a test case to verify the accuracy and convergence of the finite element method.
We apply the finite element method to an experimental chamber consisting of five equipotential
rings in a grounded cylindrical shell. We determine the strength and homogeneity of the electric field
in the region of the chamber where the atoms undergo laser excitation into a Rydberg state. © 2009
American Association of Physics Teachers.
�DOI: 10.1119/1.3000255�
I. INTRODUCTION

A wide range of atomic physics experiments are done in
external static electric fields. Calculating the electric field
generated by a particular arrangement of electrical conduc-
tors is critical for designing successful experiments and in-
terpreting experimental data. Here we focus on collision ex-
periments involving Rydberg atoms1 in a specially prepared
atomic state. The excitation of the atoms and the subsequent
collision with ions is carried out in an ion-atom chamber.
The atomic beam first passes through a region of the cham-
ber where the atoms undergo laser excitation into a Rydberg
state in the presence of a strong electric field. The field must
be very homogeneous, otherwise the atomic energy levels
are shifted out of resonance with the laser and excitation
cannot occur. As the atomic beam travels down the ion-atom
chamber, the electric field decreases in magnitude and the
atoms evolve into a coherent elliptical state.2,3 The coherent
elliptical state atoms then enter a second region where the
electric field is weak but uniform; here the atoms undergo
charge-transfer collisions with singly charged ions.4,5 The
ion-atom chamber consists of a grounded cylindrical shell
with a series of conducting rings. By adjusting the potential
of the individual rings, the field strength and homogeneity in
different regions of the chamber can be manipulated.

To predict the electric potential in the ion-atom chamber
we need to solve Laplace’s equation6 with the appropriate
boundary conditions. This equation is exactly solvable only
for the simplest geometries and boundary conditions. For a
realistic chamber, the electric potential is obtained by a nu-
merical solution. Although commercial software packages
are available, they function as a “black box,” and it is often
difficult to incorporate the exact details of the experimental
apparatus. Running the codes provides no physical insight
into the essential physics.

We present here the basic theory needed to develop a
simple finite element method7 code to solve Laplace’s equa-
tion. Although our interest is in ion-atom chambers, the finite
element method can be used to solve Laplace’s equation for
any application, including atom and ion traps.8 Any second-
order differential equation that arises in electromagnetic
theory or quantum mechanics9,10 �including eigenvalue prob-
lems� can be solved with the finite element method.

In Sec. II we consider a simplified model chamber with a
single equipotential disk in a grounded cylinder. Laplace’s
equation can be solved analytically for this case. The model
chamber serves as a test case for verifying the accuracy of

the finite element method. In Sec. III we discuss the finite
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element method. We first show how the method can be ap-
plied to a simple second-order differential equation in one
variable. We then explain how to generalize the method to
higher dimensions and describe the solution of Laplace’s
equation in cylindrical coordinates. In Sec. IV we present our
results. For the model chamber we compare the exact electric
potential with that obtained using the finite element method.
We then present our results for an experimental chamber
with five equipotential rings of finite thickness. Concluding
remarks are given in Sec. V.

II. ANALYTICAL SOLUTION FOR THE MODEL
ION-ATOM CHAMBER

For the simplified model chamber we use a grounded cyl-
inder with closed ends of radius a and length l. The chamber
contains a single equipotential disk of radius a �and negli-
gible thickness� which is electrically insulated from the
chamber wall. The disk divides the chamber into two re-
gions, where −l1�z�0 in region 1 and 0�z� l2 in region 2
and l= l1+ l2 �see Fig. 1�. We align the z-axis along the hori-
zontal direction of the atomic beam.

To find the potential inside the chamber we solve
Laplace’s equation in cylindrical coordinates
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Fig. 1. The model chamber consists of a grounded closed cylindrical shell of

radius a and length l= l1+ l2 with a single equipotential disk.
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subject to the appropriate boundary conditions. Because of
the azimuthal symmetry of the apparatus, there is no
�-dependence and V�� ,� ,z�=V�� ,z�.

The general solution in both regions is given by

V��,z� = �Aekz + Be−kz�J0�k�� , �2�

where J��x� is the �th order Bessel function.11 In region 1 we
impose the boundary condition V�a ,z�=V�� ,−l1�=0, and in
region 2 we require that V�a ,z�=V�� , l2�=0. We match the
solutions at z=0 and require that V�� ,0�=V0. If we use the
orthogonality relation11

�
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a
	J����,n�
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	�d� =
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2
�J�+1���,n��2�m.n, �3�

where ��,n is the nth zero of J��x�, the potential in regions 1

and 2 is given by

ential equation
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The corresponding electric field E=−�V�� ,z� is given by
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The sum converges rapidly. Except in the immediate vicinity
of the physical discontinuity at �=a ,z=0 �where the equipo-
tential disk is joined to the grounded cylinder�, the potential
and the electric field inside the chamber converge to eight or
more significant digits with nmax=12. �The values of �0,n for
0�n�12 are given in Ref. 12.�

III. FINITE ELEMENT METHOD

The finite element method7 is a numerical tool for solving
second-order linear differential equations. It is ideally suited
for solving problems with complex boundary conditions. In
essence the method works by breaking up the continuum into
small regions called elements. In each element we obtain a
local solution to the differential equation by approximating
the unknown function with a simple polynomial. The local
solutions are then joined smoothly at the element boundaries.
By systematically increasing the number of elements, we can
obtain numerical results that converge to the desired accu-
racy.

We first apply the finite element method to a simple one-
dimensional problem. Consider a linear second order differ-
d2f�x�
dx2 + xf�x� = 0 �6�

on the range �xmin,xmax�. The function f�x� is subject to the
boundary conditions f�xmin�=a and f�xmax�=b. In finite ele-
ment analysis we subdivide the region xmin�x�xmax into N
elements, not necessarily of equal size. The midpoint of ele-
ment n is x0

�n� and the width of the element is 2h�n�. Each
element contains five equally spaced grid points, including
the two end points, which are labeled 1� i�5. There are a
total of 4N+1 grid points in the range �xmin,xmax�. The global
index I of each grid point is related to the local index i in
element n by

I = 4�n − 1� + i . �7�

In each element we introduce a local coordinate −1�xl
�1, which is related to the global coordinate x by

x = x0
�n� + h�n�xl. �8�

The five grid points are located at xl=−1,−1 /2,0 ,1 /2, and
1. We approximate the function in element n as a linear

combination of fourth degree polynomials �i�xl�,
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f �n��x� = 

j=1

5

f j
�n�� j�xl� , �9�

where f j
�n� is the yet undetermined expansion coefficient. The

basis functions � j�xl� are chosen such that f j
�n� is the numeri-

cal value of the function f�x� at the jth grid point. The poly-
nomial basis functions are completely determined by the re-
quirement that

�i�− 1 +
1

2
�j − 1�	 = �i,j . �10�

The basis functions, which are independent of the element,
are given in Table I.

If we substitute Eqs. �8� and �9� into Eq. �6�, we obtain a
differential equation in the local coordinate for element n,



j=1

5 � 1

�h�n��2

d2� j�xl�
dxl

2 + �x0
�n� + h�n�xl�� j�xl�� f j

�n� = 0. �11�

We then project Eq. �11� onto the basis functions �i�xl� and
integrate by parts. In matrix notation, we have



j=1

5

�Sij
�n� + Mij

�n��f j
�n� = 0, �12�

where

Sij
�n� = �i,5�d� j�xl�

h�n�dxl
�

xl=1
− �i,1�d� j�xl�

h�n�dxl
�

xl=−1
, �13�

and

Mij
�n� = �

−1

1 �−
d�i�xl�
h�n�dxl

d� j�xl�
h�n�dxl

+ �i�xl��x0
�n�

+ h�n�xl�� j�xl��h�n�dxl. �14�

The matrix elements can be evaluated exactly because they
are integrals of simple polynomials.

We now construct a global matrix by adding together the
5�5 local matrices for each element



n=1

N



j=1

5

�Sij
�n� + Mij

�n��f j
�n� = 


J=1

4N+1

�SIJ + MIJ�fJ = 0. �15�

The global indices I, J are given by Eq. �7�. Note that
f4n+1= f5

�n�= f1
�n+1� for 1�n	N, which ensures continuity of

Table I. The finite element basis functions which satisfy
�i�−1+ 1

2 �j−1��=�i,j.

�1= 1
6x− 1

6x2− 2
3x3+ 2

3x4

�2=− 4
3x+ 8

3x2+ 4
3x3− 8

3x4

�3=1−5x2+4x4

�4= 4
3x+ 8

3x2− 4
3x3− 8

3x4

�5=− 1
6x− 1

6x2+ 2
3x3+ 2

3x4
the function across the element boundaries. The surface
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terms from adjacent elements cancel, leaving only the con-
tributions from the endpoints

SIJ = �I,4N+1�J,4�N−1�+j�d� j�xl�
h�N�dxl

�
xl=1

− �I,1�J,j�d� j�xl�
h�1�dxl

�
xl=−1

. �16�

We now impose the boundary conditions, which is equiva-
lent to setting f�xmin�= f1=a and f�xmax�= f4N+1=b. We elimi-
nate the rows of S and M corresponding to I=1 and I=4N
+1. The eliminated rows associated with the boundary con-
ditions are linear combinations of the remaining rows, con-
sistent with the fact that det�S+M�=0.

The final equation which includes the boundary conditions
is



J=2

4N

MIJfJ = − MI1a − MI�4N+1�b �I = 2, . . . ,4N� �17�

or M̃f=x. The nonsingular matrix M̃ is banded and symmet-
ric, with a bandwidth of nine. The vector x is mostly zeroes,
because MI1=0, I
5 and MI�4N+1�=0, I	4N−3. The re-
maining �4N−1� unknown components of f can be obtained
using a standard linear equation solver.

Equation �17� does not contain any of the tedious surface
terms that were generated by the integration by parts. All the
surface terms cancel, except at the endpoints, when the local
matrices are added together. We eventually eliminate the first
and last rows of the matrices S and M that correspond to the
endpoints. In practice, we can simply ignore the surface
terms and immediately construct the set of linear equations
given in Eq. �17�.

It is important to remember that although the unknown
coefficients f are the numerical value of the function at the
grid points, the function is analytically determined in the
range �xmin,xmax�. The piecewise continuous function f�x�
can be constructed using

f�x� = 

n=1

4N+1



j=1

5

f j
�n�� j

�n��xl� , �18�

where f j
�n�= f4�n−1�+j.

Generalizing the finite element method to two dimensions
is simple in theory. In practice, the bookkeeping becomes
cumbersome, particularly when the boundary conditions are
complicated. In this paper we seek a solution of Laplace’s
equation in cylindrical coordinates as given in Eq. �1�. The
two-dimensional continuum defined by �zmin,zmax� and
�0,�max� is subdivided into N=NzN� rectangular elements.
The elements are numbered sequentially, with

n = Nz�n� − 1� + nz �1 � nz � Nz, 1 � n� � N�� , �19�

as shown in Fig. 2. The midpoint of each element is given by
the coordinate �z0

�n� ,�0
�n�� and the area of the rectangular ele-

ment is 4hz
�n�h�

�n�.
Each element contains a 5�5 array of equally spaced grid

points �see Fig. 2�. The local index associated with the grid

point is
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i = 5�i� − 1� + iz �1 � iz � 5, 1 � i� � 5� . �20�

The entire grid consists of �4Nz+1��4N�+1� grid points. In
element n the global index is related to the local index by

I = �4Nz + 1��4�n� − 1� + i� − 1� + 4�nz − 1� + iz. �21�

Again we introduce local coordinates −1��l�1 and −1
�zl�1 which are related to the global coordinates by

� = �0
�n� + h�

�n��l, �22�

and

z = z0
�n� + hz

�n�zl. �23�

We expand the unknown function V�� ,z� into a linear com-
bination of products of fourth degree polynomials in the two
local coordinates

V��,z� = 

j�=1

5



jz=1

5

Vj
�n�� jz

�zl�� j�
��l� ,

j = 5�j� − 1� + jz. �24�

The basis functions � j are given in Table I. We substitute Eq.
�24� into Eq. �1� and project onto the basis functions to ob-
tain a local matrix equation for element n;



j�=1

5



jz=1

5 �
−1

+1 �−
d�i�

��l�

h�
�n�d�l

d� j�
��l�

h�
�n�d�l

�iz
�zl�� jz

�zl�

− �i�
��l�� j�

��l�
d�iz

�zl�

hz
�n�dzl

d� jz
�zl�

hz
�n�dzl

�hz
�n�h�

�n�

���o
�n� + h�

�n��l�d�ldzlVj
�n� = 0. �25�

�We ignore the surface terms as explained previously.�
The 25�25 local matrices are then added together to form

the global matrix; the local indices i , j are mapped into the
global indices I ,J using Eq. �21�. This procedure ensures the
continuity of the potential V�� ,z� across the element bound-
aries. Interior “edges” are shared by two elements and inte-
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Fig. 2. The finite element grid for the model chamber. The chamber consists
of a grounded closed cylindrical shell of radius a=3 and length l= l1+ l2,
where l1=4 and l2=3. The equipotential disk is held at V0=2. The 25 local
nodes are shown in element n=17.
rior “corners” are shared by four elements. In two dimen-
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sions the global matrix has a multiple band structure, but is
still symmetric. All the matrix elements can be calculated
exactly.

Depending on the nature of the problem, the boundary
conditions can be quite complicated. If the global component
VK corresponds to the known value of the potential on some
boundary, then the Kth row is eliminated from the global
matrix and the product MIKVK is carried over to the right-
hand side, analogous to Eq. �17�.

The boundary conditions for the model chamber are
straightforward; the potential is zero along the grounded
chamber walls and constant along the equipotential disk at
z=0. For the experimental chamber special care must be
taken to accommodate the multiple equipotential rings of
finite thickness that are embedded inside the grounded cham-
ber.

Once the remaining unknown components VJ are found,
the piecewise continuous potential and electric field are
given by

V��,z� = 

n=1

N



j�=1

5



jz=1

5

Vj
�n�� jz

�zl�� j�
��l� , �26�

and

E� ��,z� = − 

n=1

N



j�=1

5



jz=1

5

Vj
�n��� jz

�zl�
d� j��l�
h�

�n�d�l

�̂

+ � j�
��l�

d� j�zl�
hz

�n�dzl

ẑ� . �27�

The derivative of the solution is not necessarily continuous
across the element boundaries. However, as long as the po-
tential is relatively smooth, the electric field is numerically
continuous at the element boundaries �except at the edges of
the equipotential rings�.

IV. RESULTS

To test the finite element code and to establish the accu-
racy of the numerical solution we first compare the exact
solution for the simplified model chamber with the finite
element solution. In dimensionless units, we choose a=3,
l1=4, l2=3, and V0=2. We used a relatively crude grid with

ρ

V(ρ,z)
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Fig. 3. The potential V�� ,z� inside the model chamber; the finite element
method results are indistinguishable from the exact solution.
Nz=7 and N�=6 for a total of 42 elements. It is important
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that the equipotential disk is aligned with the edges of an
element to accommodate the discontinuity in the electric
field. The grid is superimposed over the chamber configura-
tion in Fig. 2. To treat the unphysical discontinuity at V�a ,0�,
we require V�� ,0�=V0 except at �=a, where V�a ,0�=0. The
point discontinuity is smeared out over the distance between
adjacent grid points. The results for the potential and the
electric field agree with the exact solution to a few parts in
105 or better, except in a small region near the discontinuity.
Greater accuracy could be achieved with more elements, but
our goal was to show that even a relatively crude grid can
yield accurate results for the single disk chamber. In Fig. 3
we show the potential surface for the simple model chamber.
It is often more insightful to view the equipotential lines,
which are shown in Fig. 4.

The experimental chamber consists of a grounded cylinder
of radius 3.0 cm and length 7.1 cm. The chamber contains
five equipotential rings with inner radius 0.25 cm and outer
radius 2.0 cm; the rings are of finite thickness 0.20 cm. �The
experimental chamber does not suffer from the unphysical
discontinuity of the model chamber.� The five conducting
rings were held at fixed potentials −13.2,−12, 12, 13.2, and
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Fig. 5. The finite element grid for the experimental ion-atom chamber. The
chamber consists of a grounded closed cylindrical shell with five equipoten-
tial rings of finite thickness. The two dots indicate the location of the laser
excitation at z=3.2 cm �where the electric field is strong and highly uni-
form� and the site of the ion-atom collision at z=4.6 cm �where the electric
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Fig. 4. The equipotential lines inside the model chamber.
field is weak and uniform�.
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13.8 V as shown in Fig. 5. The chamber was designed with
the intent of creating a strong, highly uniform electric field in
the region where the atoms are laser excited into a Rydberg
state. The center of this region is midway between the −12
and 12 V rings at z=3.2 cm, where the electric field is about
20 V /cm. The center of this region is indicated with a dot on
Fig. 5. Both the atomic beam and the laser beam are approxi-
mately 0.30 cm in width. The electric field needs to be uni-
form to within �0.1% over a large part of the region where
the atomic beam intersects the laser beam �0���0.15 cm,
3.05 cm�z�3.35 cm�. The ion-atom collisions occur in the
second region midway between the 12 and 13.2 V rings at
z=4.6 cm, where the field is weak ��1.0 V /cm� and uni-
form. The center of this region is also indicated with a dot on
Fig. 5. The role of the first ring �−13.2 V� is to enhance the
field homogeneity in the region of the laser excitation by
“mirroring” the fourth ring. The role of the last ring �13.8 V�
is to further shield the chamber interior from the electric
fields outside the chamber that are used to analyze the exit-
ing atomic beam.

In Fig. 5 we show the final grid superimposed on the ex-
perimental chamber configuration. We systematically in-
creased the number of elements, particularly in the region
where the laser excitation occurs, until the results converged
to sufficient accuracy to establish the homogeneity of the
electric field to four significant digits. With N�=12 and Nz
=29, the total number of elements is 348. The equipotential
rings are aligned with the edges of an element to accommo-
date the discontinuity in the derivative of the potential. After
imposing the boundary conditions �including the cylinder
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Fig. 6. The potential V�� ,z� inside the experimental chamber.

7.15.95.23.82.410

z(cm)

ρ(cm)

0

0.25

0.95

2

3

-1
3.

2V

-1
2V

12
V

13
.2

V

13
.8

V

-1
2.

6V

-1
2.

1V

-10V

-5V
0

5V

10V

12
.1

V

12
.6

V

13
.5

V

Fig. 7. The equipotential lines inside the experimental chamber.
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walls and the five equipotential rings�, the number of linear
equations to be solved is 4995. Over 99% of the CPU time is
spent in solving the final set of linear equations. Computa-
tional efficiency is improved by using an algorithm that ex-
ploits the symmetric nature of the matrix.

In Fig. 6 we show the potential surface for the experimen-
tal chamber; the corresponding equipotential lines inside the
experimental chamber are shown in Fig. 7. We use Eq. �27�
to determine the electric field in the region where the atoms
are excited into Rydberg states. At the point where the center
of the atomic beam intersects the center of the laser beam,

the electric field is E� �0,3.2 cm�=−19.545 V /cm ẑ.
The goal is to calculate the electric field in the region of

beam overlap �0���0.15 cm, 3.05 cm�z�3.35 cm� and
determine what percentage of the region satisfied the field
homogeneity specifications. In Fig. 8 the shaded area indi-

cates the region where E� �� ,z�= �−19.545�0.02 V /cm�ẑ.
The �-component of the electric field is extremely small over

the entire region, and 
E� 
�Ez. If we assume a uniform
atomic beam density, approximately 40% of the atoms in the
atomic beam can potentially be excited into a Rydberg state.

V. CONCLUSION

The finite element method is a powerful tool for solving
the linear differential equations that appear in electromag-
netic theory and quantum mechanics. Section III is suffi-
ciently general and detailed so that the method can easily be

0
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3.05 3.1 3.15 3.2 3.25 3.3 3.35
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Fig. 8. The shaded region indicates the area inside the experimental cham-
ber where E�� ,z�=E�0,3.2 cm��0.1%, which is the field homogeneity re-
quirement for efficient laser excitation of the atoms.
implemented by undergraduate or graduate students who
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have a basic knowledge of programming. Another important
application appropriate for undergraduate quantum mechan-
ics is the solution of the Schrödinger equation in one dimen-
sion. Students can solve for bound states and scattering states
for arbitrary potentials and explore the physics of systems
with more complexity than the square well or the harmonic
oscillator. The method is particularly well suited for studying
tunneling through nonrectangular barriers. The study of per-
turbation theory can be enriched by comparing the energy
obtained using first-order perturbation theory with the eigen-
value of the exact Hamiltonian computed by the finite ele-
ment method.
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