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Measurement of the lithium 10 p fine structure interval and absolute energy
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We report a measurement of the fine structure interval of the 7Li 10p atomic state with a precision significantly
better than previous measurements of fine structure intervals of Rydberg 7Li p states. Our result of 74.97 (74) MHz
provides an experimental value for the only n = 10 fine structure interval which is yet to be calculated. We also
report a measurement of the absolute energy of the 10p state and its quantum defect, which are, respectively,
42379.498(23) cm−1 and 0.04694 (10). These results are in good agreement with recent calculations.
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I. INTRODUCTION

In the past two decades, there has been considerable
progress in determining theoretical and experimental values
for fine structure intervals [1–6] and energy levels [7–10]
of Rydberg states of 7Li. The most precise fine structure
measurements to date are of the high-angular-momentum
states 10g, 10h, and 10i [5] and 9f and 9g [6], which were
measured to a few parts per million. The most precise Rydberg
nd-state intervals have been measured for n = 8–10 with a
precision of between 1.1% and 3.5% [3]. Surprisingly, only one
previous experiment has determined the fine structure intervals
of Rydberg 7Li p states [4]. This experiment reported the 18p,
21p, 23p, 24p, 25p, 29p, 30p, and 35p intervals with an
experimental precision of between 5.3% and 19%. Theoretical
fine structure calculations for the 10d and 10f states [1] and the
n = 10, 4 � l � 9 states [2] have been made. For the n = 10
states of 7Li, therefore, the fine structure intervals for every
state except the p state have been calculated. Here we report a
measurement of this interval with a precision five times greater
than the previous p-state measurements [4].

We also report a precise measurement of the absolute energy
of the 10p atomic state. Precise measurements of np energy
levels have been made for n � 6 [10] and n � 15 [9]. The
energies of np states with 7 � n � 14 have been measured
[11,12] but with relatively low precision. Our measurement
of the 10p energy is more precise by a factor of fifteen than
the corresponding results in Refs. [11,12]. Our result for the
10p energy is used to test the accuracy of recent calculations
for the energies of the 7Li np series [7] and could be used as
input for high-accuracy measurements of electric fields using
Rydberg atoms [13].

II. EXPERIMENT

The experimental apparatus used for our measurement is
shown in Fig. 1. A custom vacuum chamber (not shown)
houses a stainless steel oven in which lithium is heated to
470◦C. Lithium diffusing from the oven is collimated by a
4-mm aperture situated 190 mm from the oven exit and then
intersects a total of four overlapping laser beams. At the inter-
section region the lithium beam has a diameter of 4.5 mm and
the atomic density is estimated to be 5 × 107 atoms/cm3. The
four lasers, which are all grating stabilized diode lasers, excite
7Li to the 10p atomic state. The laser frequencies are controlled

by applying a voltage to a piezoelectric transducer (PZT)
mounted on the diffraction grating, and their wavelengths are
monitored by a wavemeter (Advantest TQ8325).

Lasers L1a and L1b excite 7Li to the 2P3/2 state from both
ground-state hyperfine levels (inset Fig. 1). Laser L2 stimulates
the 2P3/2 → 3S1/2, F = 2 transition, and L3 subsequently ex-
cites the atoms to the 10p state. Laser L3 can be retroreflected
back through the lithium beam to ensure that Doppler shifts
are reduced to a negligible level for our measurements. Lasers
L1a, L1b, and L2 saturate their transitions but L3 does not.

The optical frequencies of L1a, L1b, and L2 are locked
to their transitions by phase-sensitively detecting the 2P3/2 →
2S1/2 and 3S1/2 → 2P3/2 fluorescence. With L1a, L1b, and
L2 locked, successful excitation to the 10p states by L3
is confirmed by observing the 10p → 2S1/2 fluorescence.
This fluorescence at 236 nm is well separated from all other
fluorescence wavelengths and can be detected with high
efficiency using a photomultiplier tube (PMT). The PMT
is situated outside the vacuum chamber and fluorescence is
coupled to it via a lens inside the chamber. Figure 2 shows the
output of the PMT as L3 is scanned across the 3S1/2 → 10p

transition, and the two 10p fine structure components are
clearly resolved.

In order to determine the frequency separation of the
fine structure states, we put optical sidebands on L3 at a
known frequency spacing. To do this, we modulate the laser
current at a frequency fsb and obtain three distinct optical
frequencies: f0, f0 ± fsb, where f0 is the lasing frequency with
no modulation and f0 ± fsb are the frequencies of the optical
sidebands. For fsb < 160 MHz the laser current is modulated
by a PTS160 synthesizer with an accuracy of 0.1 ppm. For
fsb > 160 MHz a voltage-controlled oscillator is used. In both
cases the frequency is also measured by a frequency counter,
Fluke PM6685, with an accuracy of better than 10 ppm.
Figure 3 shows the fluorescence detected by the PMT as a
function of time when 159.000 MHz sidebands are imprinted
on L3 and the laser frequency is scanned across the 3S1/2 →
10p transition. Three distinct pairs of peaks are observed,
one for each of the two sideband lasing frequencies and one
for the main lasing frequency of L3. The two peaks within
each pair are separated by the 10p fine structure splitting,
and the pairs themselves are separated by the sideband
frequency.

The procedure we use to determine the fine structure
interval is to scan the L3 optical frequency (with sidebands

1050-2947/2010/81(2)/024501(4) 024501-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.024501


BRIEF REPORTS PHYSICAL REVIEW A 81, 024501 (2010)

Solar blind
PMT

L3

Lithium
Oven

L1a, L1b, 
and L2

Lithium
beam

PD 1

PD 2

2S1/2

F = 2
F = 1

2P3/2

3S1/2

10p

F = 2

L3

L2

L1a L1b

FIG. 1. (Color online) Apparatus used to laser excite 7Li to the
10p atomic state via the 2P3/2 and 3S1/2 states. Photodiodes 1, 2
(PD1, 2) detect fluorescence from the 2P3/2 and 3S1/2 states while
the PMT detects 10p fluorescence to the ground state. Inset shows
energy levels involved in the excitation to the 10p state.

present) to generate data similar to that shown in Fig. 3. We
assume the frequency scan is linear in time and calculate the
frequency scan rate, α, given by

α = (w1 + w2 + w3 + w4) fsb

(w1�t1 + w2�t2 + w3�t3 + w4�t4)
. (1)

The quantities w1, w2, w3, and w4 are the statistical weights
for the time intervals �t1, �t2, �t3, and �t4 (see Fig. 3) found
from a six-Gaussian fit to each laser sweep. The 10p interval
is then given by

�f10p = α

3
(�t10p1 + �t10p2 + �t10p3), (2)

where the quantities �t10p1, �t10p2, and �t10p3 are three
measurements of the 10p interval, one for each sideband and
one for the main lasing frequency. In this way, the sidebands
at a known frequency provide a means to calibrate the L3 scan
and determine the 10p fine structure interval. This technique is
a variant of the technique used to study the fine and hyperfine
structure of Li+ [14].

III. RESULTS AND DISCUSSION

A total of 1,546 scans similar to the one shown in Fig. 3
were taken at eight different sideband frequencies between
139 and 270 MHz. For each scan the fine structure interval
is calculated using Eqs. (1) and (2). Scans with the same f sb

are grouped together, and the results are shown in Fig. 4. At
each sideband frequency, half the data are taken while the L3
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FIG. 2. The 10p → 2S1/2 fluorescence detected by the PMT
as the L3 optical frequency is scanned across the 10p resonance.
Fluorescence from the two 10p fine structure levels are clearly
resolved.
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FIG. 3. (Color online) The 10p → 2S1/2 fluorescence as L3 (with
optical sidebands) is scanned across the 10p states. Inset shows a
slight asymmetry in the fluorescence data when L3 is scanned up
through the 10p states.

optical frequency is being increased, to scan up through the
3S1/2 → 10p transition, and half are taken while the frequency
is decreased, to scan down through the transition. We combine
the results from Fig. 4 and find the fine structure interval
to be 74.97 (38) MHz. The uncertainty in parentheses is the
standard deviation from the mean, treating measurements at
each sideband frequency as independent from one another.

Calculating the fine structure interval using Eqs. (1) and
(2) assumes that the L3 laser frequency is varying linearly
with time. Since the displacement of the PZT is not perfectly
linear with applied voltage, even over the small scan ranges
used here, the assumption of a linear frequency scan is an
approximation. Averaging measurements of the fine structure
interval when the laser frequency is scanned up and down
is a way to reduce the effect of scan nonlinearity. Table I
shows the difference between the intervals measured with L3
frequency increasing (↑) and decreasing (↓), and the difference
is statistically significant. Some of this difference is likely due
to scan nonlinearity and some is due to a small asymmetry
present in the fluorescence peaks recorded while scanning the
laser frequency up (see inset of Fig. 3). This asymmetry could
be due to the nonlinear scan itself or to some more complex
reason. For example, scanning the laser frequency in different
directions results in a different 10p fine structure component
coming into resonance first. If exciting different fine structure
components affects the population distribution in the lower
atomic levels by an optical pumping effect, it is possible that
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FIG. 4. The 10p fine structure interval measured using different
sideband frequencies. For each frequency there are two data points:
the left-hand one is when the L3 optical frequency is scanned up, and
the right-hand one is when the optical frequency is scanned down.
They are offset horizontally for clarity. The error bars are standard
deviations from the mean for all up or down scans at a given fsb.
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TABLE I. Difference (↑ − ↓) between
fine structure intervals measured by scan-
ning L3 with its frequency increasing (↑)
and decreasing (↓), at different sideband
frequencies. The weighted average differ-
ence of all the data is +0.63 (0.51) MHz.
Numbers in parentheses represent the stan-
dard deviation from the mean difference. All
units are MHz.

fsb ↑ − ↓
139 0.67 (1.78)
159 0.86 (1.25)
181 0.22 (0.99)
200 −0.29 (2.10)
220 0.58 (2.99)
240 1.22 (1.19)
260 0.71 (1.11)
270 0.26 (3.34)
All 0.63 (0.51)

the fluorescence detected later in the scan would be changed
and result in an asymmetric line shape.

To test for scan nonlinearity we compare the time intervals
�t1, �t2, �t3, and �t4, as defined in Fig. 3. Since these
intervals all correspond to exactly f sb we can calculate four
separate scan rates (α1, α2, α3, and α4) distributed throughout
the duration of a scan. Any systematic variation in these
scan rates would indicate a scan nonlinearity. We note that
since our data analysis takes the average of these four rates
any scan nonlinearity is already partially accounted for. A
typical variation of the rates is seen in Fig. 5(a) and shows no
evidence of scan nonlinearity, whereas a small but statistically
significant variation is found in six (of the twenty-two) data
sets taken. The largest of these variations is shown in Fig. 5(b).
The six data sets that show a nonlinear trend are those with
the largest sideband frequencies (220–270 MHz), as would be
expected since these require the largest frequency sweep.

The effect of a scan nonlinearity is investigated in the
following way. We create simulated data sets (with a known
fine structure interval) that would result from scans that have
a quadratic or cubic deviation from linearity. The amount of
nonlinearity is chosen to give variations in α comparable to
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FIG. 5. Scan rates measured during different parts of the L3
optical frequency scan: (a) shows a typical variation for fsb =
159 MHz, where the scatter and error bars could conceal a nonlinear
trend, and (b) shows fsb = 270 MHz, where a small systematic scan
nonlinearity is seen.

TABLE II. Measured and calculated energy and quantum defect
of the 10p state.

E10p (cm−1) δ10p Reference

42379.498 (23) 0.04694 (10) This work
42379.16 (36) 0.0485 (16) [11] Experiment
42379.48 (60) 0.047 (3) [12] Experiment
42379.569 0.04662 [7] R-matrix theory
42379.479 0.04702 [7] Defect function

those in Fig. 5. These data sets are analyzed using the same
fitting routine we use to analyze the experimental data. From
these tests we find that the maximum scan nonlinearity that
could be concealed by the scatter and error bars in Fig. 5(a)
would shift the 10p fine structure interval by ±0.24 MHz,
whereas the nonlinearity in Fig. 5(b) would give a −0.14 MHz
shift. Since these values are less than the observed differences
shown in Table I, we use the observed differences to provide
the uncertainty in our measurement due to scan nonlinearity
and peak asymmetry. We make a conservative choice for this
uncertainty to be the full mean difference (i.e., ±0.63 MHz).
Our final result for the 10p fine structure interval is then
74.97 (38) (63) MHz, where the first uncertainty is statistical
and the second systematic. Combining these uncertainties in
quadrature gives a final result for the 10p fine structure interval
of 74.97 (74) MHz.

Our measurement of the 10p interval is more precise by a
factor of 5.4 than the best previous measurements of Rydberg
p states [4], and we hope it will prompt the calculation of this
remaining fine structure interval for the n = 10 states. This
calculation could be especially interesting since the lithium
core plays a significantly larger role for p states than for higher
angular momentum states.

Determining the energy of the 10p atomic states above the
2S1/2 ground state, E10p, is straightforward. Our wavemeter
reports the wavelength of the 3S1/2, F = 2 → 10p center of
gravity to be 659.048(1) nm, where the uncertainty comes
from the last reported digit. The wavemeter accuracy is
confirmed by measuring the wavelengths of the lithium D2

lines, which are only 12 nm different from the wavelength
of the 3S1/2 → 10p transition and are accurately known [15].
The energy of the center of gravity of the 3S1/2 state [16] and
the 3S1/2 hyperfine splitting [17] are also accurately known,
which allows us to calculate E10p as shown in Table II. Also
shown in the table are previous measurements [11,12] and
recent theoretical calculations [7] of this energy. To infer
the 10p energy from [7] we use the precise determination of
the 7Li ionization potential (VI ) of 43487.15940 (18) cm−1 [8].
The quantum defect of the 10p states, δ10p, is given by

δ10p = 10 − √
109728.73/(VI − E10p) (3)

and is also included in Table II. It can be seen that our energy
and therefore defect measurement agrees very well with the
quantum defect function result of Ref. [7] and is close to
the R-matrix calculation. Our results are considerably more
precise than previous measurements.
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IV. CONCLUSION

We have measured the fine structure interval of the 10p

atomic state of 7Li with a precision five times greater than
previous fine structure measurements of Rydberg 7Li p states.

We hope that this result will stimulate interest in calculating
this interval, which has thus far been neglected. We have also
measured the energy of the 10p state and from this inferred
the 10p quantum defect, which is in close agreement with
recent calculations.
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