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INTRODUCTION
The signifi cance of glacial erosion in alpine 

landscapes and the sensitivity of glaciers to cli-
mate suggest that climate infl uences the evolu-
tion of mountain topography. Peak elevations 
correlate with snowlines in the Himalaya (Bro-
zovic et al., 1997), Basin and Range (Foster et 
al., 2008), and Cascade Range (Mitchell and 
Montgomery, 2006). Exhumation rates increase 
with glacial extent in the Chugach Range (Spo-
tila et al., 2004), and erosion by cirque glaciers 
dominates landscape evolution in the Kyr-
gyz Range (Oskin and Burbank, 2005). These 
observations have motivated the hypothesis 
that glaciers act as a “buzz saw” by shaving 
off topography that rises above the equilibrium 
line altitude (ELA) (e.g., Brozovic et al., 1997). 
Conceptual and numerical models lend support 
to this hypothesis (Brocklehurst and Whipple, 
2002; Tomkin, 2007).

The glacial buzz saw hypothesis states that 
climate exerts a strong control on topography, 
limiting it to altitudes near the ELA. One pos-
sible mechanism for the buzz saw is that cirque 
formation sets the base level for slopes ris-
ing above cirque basins (Mitchell and Mont-
gomery, 2006). The steep headwall above a 
cirque basin cannot be indefi nitely tall but 
must be limited by rock strength (Schmidt and 
Montgomery, 1995). Therefore, cirques limit 
maximum topography. New data from south-
ern Switzerland support the glacial buzz saw 
hypothesis and confi rm that cirque formation 
is a dominant mechanism by which the buzz 
saw operates. Topography infl uences tempera-
ture and precipitation and, therefore, the ELA. 
Topography and climate evolve together, creat-

ing a dynamic interaction between glacial pro-
cesses and peak altitudes.

Cirque formation has been explained by 
rotational fl ow of cirque glaciers (Sugden and 
John, 1976), variations in subglacial water pres-
sure (Hooke, 1991), and periglacial freeze-thaw 
processes (McCall, 1960). Some have suggested 
that cirques form at an average Quaternary ELA 
(e.g., Flint, 1957; Porter, 1964) based on the 
observation that the surface defi ned by cirque 
fl oors is parallel to the modern snowline and 
reconstructed past ELAs in some areas (Por-
ter, 1964; Leonard, 1984; Porter, 1989; Evans, 
1999). Cirques may also form at the head of 
larger glaciers, well above the ELA (e.g., Holm-
lund, 1991), and numerical modeling produces 
cirques several hundred meters below the time-
averaged ELA (MacGregor et al., 2009).

We investigate the relationship among 
cirques, local peaks, and climate in the south-
ern Swiss Alps, where modern precipitation 
patterns are well documented and highly 
variable in space. Precipitation gradients are 
pronounced in the Ticino canton of Switzer-
land, where precipitation rates are twice those 
of regions only 50 km to the east and west 
(Fig. 1) (Frei and Schär, 1998). Precipitation 
gradients are relevant because previous work 
in the British Columbia Coast Range (Ostrem, 
1972), Cascade Mountains (Porter, 1977), 
and San Juan Mountains (Leonard, 1984) has 
shown that glaciation thresholds and ELAs 
correlate with precipitation. Ticino’s enhanced 
precipitation occurs in an area of diminished 
maximum and mean elevation (Fig. 1). This 
topographic low is not the result of differences 
in rock erodibility, or differences in average 

slopes relative to surrounding areas (Kühni and 
Pfi ffner, 2001).

A comparison of cirque and peak elevations 
with an ELA calculated from climate data bol-
sters the glacial buzz saw hypothesis. Cirque 
basin relief measurements confi rm a mechanistic 
explanation for the glacial buzz saw: glacial ero-
sion controls peak elevation indirectly through 
the formation of cirques, which set a base level 
for slope processes. The observed connection 
between the regional ELA and range-scale 
maximum topography requires precipitation and 
topography to have co-evolved in Ticino.

METHODS AND RESULTS
We defi ne cirques as overdeepenings or 

fl at areas located within theater-shaped valley 
heads. Five hundred cirques were located using 
the 1:25,000 scale topographic contour maps 
produced by Swisstopo Swiss National Maps 
(Fig. 1). A characteristic of many cirques is the 
presence of a tarn or swamp, indicating an over-
deepening. For each cirque, the latitude, lon-
gitude, aspect, and altitude of the cirque outlet 
(in the case of a lake) or fl oor were measured. 
Only the uppermost cirque was marked in val-
leys with several overdeepenings, and overdeep-
enings located beneath permanent glacial ice 
were not noted. To measure headwall relief, we 
recorded the altitude for each cirque’s highest 
adjacent peak or ridge.

Twenty years (1971–1990) of gauge data 
from 6700 sites across the Alps were used by 
Frei and Schär (1998) to produce a regular grid 
of annual precipitation with ~25 km resolution. 
We interpolated between these points (inverse 
distance weighting, second power) to create 
a continuous 2-km-resolution map of precipi-
tation. A digital elevation model (DEM) was 
constructed from 3 arc-second Shuttle Radar 
Topography Mission (SRTM) elevation data 
projected into Swiss Grid coordinates with 90 m 
resolution. Gaps in the data were fi lled by merg-
ing the 90 m DEM with a 250 m DEM produced 
by Swisstopo.

Cirque fl oor elevations and peak elevations 
are well correlated across the region (R2 = 0.64) 
(Fig. 2A). This correlation is not strongly infl u-
enced by the fact that peaks are necessarily 
higher than cirques. We tested this possibility 
by randomly assigning peaks to cirques within 
our data set and discarding cases in which the 
peak elevation was lower, and we found no 
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correlation between peak and cirque eleva-
tions (R2 = 0.06). A more important factor than 
the correlation is the slope of the relationship. 
Structural analysis, which allows for errors in 
both variables (Mark and Church, 1977), yields 
a best-fi tting line with a slope of 0.93, indicating 
that as cirque elevations vary, peak elevations 
vary by nearly the same amount. We assume that 
random and measurement errors are comparable 
for cirques and peaks, an assumption supported 
by similar standard deviations in both. The slope 
near 1 indicates that the relief of cirque basins, 
which averages 370 ± 175 m (n = 500), does 
not depend on cirque fl oor elevation. While 
cirque elevations and peak elevations are also 
somewhat correlated with local precipitation (R2 
= 0.38 and 0.30, respectively), the relationship 
between cirque relief and precipitation is very 
weak (R2 = 0.03) (Fig. 2B).

Spatial variability in the modern ELA results 
from the spatial variability in precipitation 
across the region. Ohmura et al. (1992) docu-
mented the relationship between precipitation 
and temperature at the ELA of 70 modern gla-
ciers across the globe:

 P T T= + +9 296 6452 , (1)

where P is annual precipitation in mm/yr, and 
T is average summer temperature at the ELA 
in °C. This relationship is similar to that found 
by Zemp et al. (2007) for just the Alps. To esti-
mate the regional modern ELA, we fi rst solved 
Equation 1 for T and determined the average 
summer temperature of the ELA given mod-
ern precipitation rates. We then estimated the 
elevation at which this summer temperature 
occurred using:

 z
T T= − 0

Γ
, (2)

where z is elevation in m, T0 is the temperature 
at sea level in °C, and Γ is the atmospheric lapse 
rate in °C/m. Summer average temperatures 
for A.D. 1961–1990 from 14 southern Swiss 
weather stations between 200 and 2700 m in 
altitude were obtained from the Federal Offi ce 
of Meteorology and Climatology MeteoSwiss 
(http://www.meteoschweiz.admin.ch/web/en/
climate/swiss_climate/tabellen.html). There is a 
strong correlation between altitude and summer 
average temperature (R2 = 0.98), which gives a 
best-fi tting sea-level temperature of 21 °C and 
lapse rate of −6.5 °C/km. Using Equations 1 and 
2, we constructed a map of the modern ELA 
based on the precipitation map (Fig. 3). The 
standard error for estimated temperature of the 
ELA based on precipitation data is 0.5–1.4 °C, 
which translates to ~100–250 m of uncertainty 
in the ELA using Equation 2 (Ohmura et al., 
1992; Zemp et al., 2007). Added to this uncer-
tainty, there is the uncertainty in measurement 
of mountain precipitation, especially snow, 
which is likely to be on the order of tens of 
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Figure 1. A: Precipitation pattern in color scale over study region (see inset map); topogra-
phy is indicated by shaded relief. Black contour line shows 1500 mm/yr precipitation rate. Ti-
cino, located in south-central section of study area, is wetter and has lower peak elevations 
than regions to east and west. B: Swaths indicated above. For each, maximum and mean 
elevations are shown as black and gray lines, respectively, while average annual precipita-
tion is given by red line. Cirques are shown as black circles or diamonds in panels.

Figure 2. A: Comparison of cirque fl oor el-
evations with elevations of neighboring 
peaks. Peaks and cirque fl oors are well cor-
related (R 2 = 0.64), and structural analysis 
gives a best-fi tting line with a slope of 0.93, 
indicating that as cirque fl oor elevations 
vary, peak elevations vary by nearly same 
amount. B: Relationship between precipi-
tation rates and cirque fl oor elevations (in 
black on left axis), and cirque headwall relief 
(in gray on right axis). Annual precipitation 
is inversely correlated with cirque fl oor el-
evation (R 2 = 0.38), while headwall relief is 
insensitive to precipitation.
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 percent, and the spatial interpolation of precipi-
tation data. Nevertheless, the variability in the 
calculated ELA is consistent with the variability 
of snowlines in the Swiss Alps measured using 
photogrammetric techniques (National Snow 
and Ice Data Center, 1999).

Using the coordinates and elevations of the 
cirque outlets derived from the topographic 
maps, we interpolated a best-fi t “cirque fl oor 
surface” by inverse-distance weighting (fi rst 
power, 12 point minimum) to compare to the 
modern ELA. The modern ELA surface and 
the surface defi ned by cirque fl oors across 
the southern Swiss Alps are similar in shape 
(Fig. 3). Both mimic the precipitation pattern 
across the region by dipping to lower elevations 
in Ticino. The robustness of the pattern indi-
cates that glacial erosion has occurred at lower 
altitudes in Ticino relative to surrounding areas 
throughout the Quaternary. Interestingly, the 
relief of the cirque fl oor surface is larger than 
that of the modern ELA surface (~1100 m ver-
sus ~700 m).

DISCUSSION
The data are consistent with the glacial buzz 

saw hypothesis, and they provide an indepen-
dent confi rmation of the mechanistic explana-
tion for the buzz saw suggested by Mitchell and 
Montgomery (2006). Cirque elevations track the 
ELA across the study region, as do peak eleva-
tions (Figs. 2 and 3). Cirques have a nearly fi xed 
relief across the study area, despite large varia-
tions in the precipitation rate and cirque eleva-
tions. This suggests that slope processes limit 
the relief of cirque headwalls and, therefore, 
maximum topography. Headwall-lowering pro-
cesses primarily depend on the slope and rock 
strength, and this is consistent with our observa-
tions that relief is fi xed and not strongly tied to 
the rate of precipitation. If we accept the domi-
nant view that cirques form near a long-term 
average ELA, then the glacial buzz saw theory 
limits maximum topography indirectly by set-
ting a base level for headwall scarps.

An alternate hypothesis is that peak elevations 
determine cirque elevations. This relationship is 

possible if cirque overdeepenings only appear 
once a threshold glacial size is attained. In this 
scenario, the connection between precipitation 
and glacier size implies that precipitation rate 
and headwall relief should be negatively cor-
related, because glaciers in wetter areas would 
need smaller accumulation areas to form cirques. 
Since headwall relief and precipitation rates are 
uncorrelated, this explanation is not preferred.

Spatial variability in the modern ELA is driven 
by enhanced precipitation in the Ticino region. 
The enhanced precipitation depends on two fac-
tors: the occurrence of storm events during south-
erly fl ow (Schär et al., 1998), and the topographic 
depression of Ticino (Schneidereit and Schär, 
2000). These factors were likely acting through-
out the Quaternary: the large-scale circulation 
pattern associated with fl ow from the south is 
present and even potentially enhanced in global 
circulation models of the Last Glacial Maxi-
mum (LGM; e.g., Harrison et al., 1992), while 
paleoclimate evidence supports the occurrence of 
southerly fl ow events during glacial periods (Flo-
rineth and Schlüchter, 2000) and wet conditions 
(Prentice et al., 1992; Collier et al., 2000).

The modern ELA calculation shows a strong 
correlation with cirque fl oor surfaces (Fig. 3), 
but it underpredicts topography relief in the 
wettest areas (by up to 400 m). This difference 
could be a result of the assumptions in our ELA 
model. Alternately, it could refl ect that either 
the Quaternary average ELA was more variable 
than the modern ELA, or that cirques do not 
form strictly parallel to the ELA and are infl u-
enced by precipitation-dependent erosion rates.

It is possible that paleoprecipitation rates 
were more variable than those today, and any 
increased southerly fl ow during the Quaternary 
(e.g., Harrison et al., 1992) could have enhanced 
orographic precipitation in Ticino. An increase 
in the relief of the ELA surface by 400 m to fi t 
the cirque fl oor surface would require an addi-
tional variation in precipitation of ~750 mm/
yr. While not within the scope of this paper, the 
possibility of such a signifi cant change in pre-
cipitation could be addressed using a combina-
tion of climate modeling and glacial reconstruc-
tion (e.g., Kuhlemann et al., 2008).

It is also possible that higher relief of the 
cirque fl oor surface represents the relative effi -
ciency of glacial erosion across the region rather 
than proportional variability in the ELA. Tom-
kin and Roe (2007) estimated that doubling the 
precipitation rate would roughly double the ero-
sion rate of otherwise identical glaciers. With an 
assumed characteristic erosion rate of ~0.5mm/
yr and a doubling of precipitation, the 400 m 
of additional glacial erosion in Ticino could be 
accomplished in ~800,000 yr, a plausible time 
frame. Comparative measurements of glacial 
erosion rates or glacial sediment volumes could 
either support or undermine this hypothesis.
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Finally, the large-scale topography of Ticino 
is partially responsible for the precipitation pat-
tern and depression of the ELA: topography 
infl uences climate. Spatial variability in peak 
and cirque elevations is matched by correspond-
ing variability in the ELA and precipitation rates 
in the southern Swiss Alps, indicating a climatic 
control on topography. Alpine glaciers are sen-
sitive to both topography, through the decrease 
in temperature with elevation, and precipitation 
rates. The evolution of the southern Swiss Alps 
refl ects an interplay between climate and topog-
raphy realized through glaciation.

CONCLUSIONS
(1) Peak and cirque elevations vary together, 

following changes in the ELA across climate 
gradients in the southern Swiss Alps. The close 
association of peaks, cirques, and the precipita-
tion-controlled variability in the ELA supports 
the glacial buzz saw hypothesis because maxi-
mum topography is depressed where the ELA 
is depressed.

(2) The constant relief of cirque basins across 
the region, despite large variations in elevation 
and precipitation rate, validates a process-based 
mechanism for the glacial buzz saw. The eleva-
tion of cirque formation is tied to the ELA, and 
slope processes limit the relief of headwalls 
standing above cirque basins.

(3) Climate and topography are coupled 
through processes of glacial erosion and oro-
graphic precipitation: topography infl uences the 
spatial variability in precipitation rates, the extent 
of glaciation depends on both topography and 
precipitation rates, and maximum topography is 
in turn limited by glacial erosion. This feedback 
may help maintain and even enhance large-scale 
topographic undulations in alpine terrain.
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